Trustworthy Federated Learning (TFL) typically leverages protection mechanisms to guarantee privacy. However, protection mechanisms inevitably introduce utility loss or efficiency reduction while protecting data privacy. Therefore, protection mechanisms and their parameters should be carefully chosen to strike an optimal tradeoff between \textit{privacy leakage}, \textit{utility loss}, and \textit{efficiency reduction}. To this end, federated learning practitioners need tools to measure the three factors and optimize the tradeoff between them to choose the protection mechanism that is most appropriate to the application at hand. Motivated by this requirement, we propose a framework that (1) formulates TFL as a problem of finding a protection mechanism to optimize the tradeoff between privacy leakage, utility loss, and efficiency reduction and (2) formally defines bounded measurements of the three factors. We then propose a meta-learning algorithm to approximate this optimization problem and find optimal protection parameters for representative protection mechanisms, including Randomization, Homomorphic Encryption, Secret Sharing, and Compression. We further design estimation algorithms to quantify these found optimal protection parameters in a practical horizontal federated learning setting and provide a theoretical analysis of the estimation error.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Meta-Learning to Cluster
Arxiv
18+阅读 · 2019年10月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员