We present a rotation equivariant, quasi-monolithic graph neural network framework for the reduced-order modeling of fluid-structure interaction systems. With the aid of an arbitrary Lagrangian-Eulerian formulation, the system states are evolved temporally with two sub-networks. The movement of the mesh is reduced to the evolution of several coefficients via complex-valued proper orthogonal decomposition, and the prediction of these coefficients over time is handled by a single multi-layer perceptron. A finite element-inspired hypergraph neural network is employed to predict the evolution of the fluid state based on the state of the whole system. The structural state is implicitly modeled by the movement of the mesh on the solid-fluid interface; hence it makes the proposed framework quasi-monolithic. The effectiveness of the proposed framework is assessed on two prototypical fluid-structure systems, namely the flow around an elastically-mounted cylinder, and the flow around a hyperelastic plate attached to a fixed cylinder. The proposed framework tracks the interface description and provides stable and accurate system state predictions during roll-out for at least 2000 time steps, and even demonstrates some capability in self-correcting erroneous predictions. The proposed framework also enables direct calculation of the lift and drag forces using the predicted fluid and mesh states, in contrast to existing convolution-based architectures. The proposed reduced-order model via graph neural network has implications for the development of physics-based digital twins concerning moving boundaries and fluid-structure interactions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员