Methods that distinguish dynamical regimes in networks of active elements make it possible to design the dynamics of models of realistic networks. A particularly salient example is partial synchronization, which may play a pivotal role in elucidating the dynamics of biological neural networks. Such emergent partial synchronization in structurally homogeneous networks is commonly denoted as chimera states. While several methods for detecting chimeras in networks of spiking neurons have been proposed, these are less effective when applied to networks of bursting neurons. Here we introduce the correlation dimension as a novel approach to identifying dynamic network states. To assess the viability of this new method, we study a network of intrinsically Hindmarsh-Rose neurons with non-local connections. In comparison to other measures of chimera states, the correlation dimension effectively characterizes chimeras in burst neurons, whether the incoherence arises in spikes or bursts. The generality of dimensionality measures inherent in the correlation dimension renders this approach applicable to any dynamic system, facilitating the comparison of simulated and experimental data. We anticipate that this methodology will enable the tuning and simulation of when modelling intricate network processes, contributing to a deeper understanding of neural dynamics.
翻译:暂无翻译