The Poisson Generalized Linear Model (GLM) is a foundational tool for analyzing neural spike train data. However, standard implementations rely on discretizing spike times into binned count data, limiting temporal resolution and scalability. Here, we develop Monte Carlo (MC) methods and polynomial approximations (PA) to the continuous-time analog of these models, and show them to be advantageous over their discrete-time counterparts. Further, we propose using a set of exponentially scaled Laguerre polynomials as an orthogonal temporal basis, which improves filter identification and yields closed-form integral solutions under the polynomial approximation. Applied to both synthetic and real spike-time data from rodent hippocampus, our methods demonstrate superior accuracy and scalability compared to traditional binned GLMs, enabling functional connectivity inference in large-scale neural recordings that are temporally precise on the order of synaptic dynamical timescales and in agreement with known anatomical properties of hippocampal subregions. We provide open-source implementations of both MC and PA estimators, optimized for GPU acceleration, to facilitate adoption in the neuroscience community.
翻译:泊松广义线性模型(GLM)是分析神经脉冲序列数据的基础工具。然而,标准实现依赖于将脉冲时间离散化为分箱计数数据,限制了时间分辨率和可扩展性。本文针对这些模型的连续时间形式,开发了蒙特卡洛(MC)方法和多项式近似(PA)方法,并证明其相较于离散时间模型具有优势。进一步,我们提出使用一组指数缩放的拉盖尔多项式作为正交时间基,该方法改进了滤波器识别能力,并在多项式近似下得到闭式积分解。将我们的方法应用于啮齿类动物海马体的合成及真实脉冲时间数据,结果表明:相较于传统的分箱GLM,本方法在准确性和可扩展性方面均表现更优,能够在大规模神经记录中实现时间精度达突触动力学时间尺度量级的功能连接推断,且推断结果与海马体亚区域已知的解剖学特性一致。我们提供了MC与PA估计器的开源实现,并针对GPU加速进行了优化,以促进其在神经科学领域的应用。