A bisimulation for a coalgebra of a functor on the category of sets can be described via a coalgebra in the category of relations, of a lifted functor. A final coalgebra then gives rise to the coinduction principle, which states that two bisimilar elements are equal. For polynomial functors, this leads to well-known descriptions. In the present paper we look at the dual notion of "apartness". Intuitively, two elements are apart if there is a positive way to distinguish them. Phrased differently: two elements are apart if and only if they are not bisimilar. Since apartness is an inductive notion, described by a least fixed point, we can give a proof system, to derive that two elements are apart. This proof system has derivation rules and two elements are apart if and only if there is a finite derivation (using the rules) of this fact. We study apartness versus bisimulation in two separate ways. First, for weak forms of bisimulation on labelled transition systems, where silent (tau) steps are included, we define an apartness notion that corresponds to weak bisimulation and another apartness that corresponds to branching bisimulation. The rules for apartness can be used to show that two states of a labelled transition system are not branching bismilar. To support the apartness view on labelled transition systems, we cast a number of well-known properties of branching bisimulation in terms of branching apartness and prove them. Next, we also study the more general categorical situation and show that indeed, apartness is the dual of bisimilarity in a precise categorical sense: apartness is an initial algebra and gives rise to an induction principle. In this analogy, we include the powerset functor, which gives a semantics to non-deterministic choice in process-theory.


翻译:一组的配方的粘合点的刺激性。 直觉上, 两个元素是分开的, 如果有积极的区分方法的话。 不同的是 : 两个元素是分开的, 如果不是两重关系类别中的粘合点, 只有两个不同的配方。 最后的粘合点产生一个调合原则, 指出两个相似的元素是相等的。 对于多元的配方, 这会导致众所周知的描述。 在本文件中, 我们查看“ 分割” 的双重概念。 我们用两种不同的系统来研究“ 分离” 。 首先, 两种元素是分开的。 在标签的过渡系统中, 两种元素是不同的: 两个元素是分开的, 分解是分解的, 一个分解性概念是分解的, 一个分解的分解点, 一个分解的分解, 一个分解的分解, 一个分解, 一个分解, 一个分解的分解, 一个分解, 一个分解, 一个分解, 一个分解的分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解, 一个分解。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
168+阅读 · 2020年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月5日
Arxiv
0+阅读 · 2021年3月4日
Arxiv
0+阅读 · 2021年3月4日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
168+阅读 · 2020年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员