Modern deep learning systems are typically deployed as open-loop function approximators: they map inputs to outputs in a single pass, without regulating how much computation or explanatory effort is spent on a given case. In safety-critical settings, this is brittle: easy and ambiguous inputs receive identical processing, and uncertainty is only read off retrospectively from raw probabilities. We introduce the Surgical Cognitive Interpreter (SCI), a lightweight closed-loop metacognitive control layer that wraps an existing stochastic model and turns prediction into an iterative process. SCI monitors a scalar interpretive state SP(t), here instantiated as a normalized entropy-based confidence signal, and adaptively decides whether to stop, continue sampling, or abstain. The goal is not to improve accuracy per se, but to regulate interpretive error ΔSP and expose a safety signal that tracks when the underlying model is likely to fail. We instantiate SCI around Monte Carlo dropout classifiers in three domains: vision (MNIST digits), medical time series (MIT-BIH arrhythmia), and industrial condition monitoring (rolling-element bearings). In all cases, the controller allocates more inference steps to misclassified inputs than to correct ones (up to about 3-4x on MNIST and bearings, and 1.4x on MIT-BIH). The resulting ΔSP acts as a usable safety signal for detecting misclassifications (AUROC 0.63 on MNIST, 0.70 on MIT-BIH, 0.86 on bearings). Code and reproducibility: https://github.com/vishal-1344/sci


翻译:现代深度学习系统通常部署为开环函数逼近器:它们以单次前向传播的方式将输入映射到输出,而不调节针对特定样本所投入的计算量或解释性资源。在安全关键场景中,这种机制具有脆弱性:简单样本与模糊样本会接受完全相同的处理,且不确定性仅能事后从原始概率值中读取。本文提出外科手术式认知解释器(SCI),这是一种轻量级的闭环元认知控制层,可封装现有随机模型并将预测转化为迭代过程。SCI监控标量解释状态SP(t)(本文实例化为基于归一化熵的置信度信号),并自适应地决定停止采样、继续采样或弃权。其目标并非直接提升准确率,而是调控解释误差ΔSP,并生成可追踪底层模型可能失效时刻的安全信号。我们在三个领域围绕蒙特卡洛丢弃分类器实例化SCI:视觉(MNIST手写数字)、医疗时间序列(MIT-BIH心律失常)和工业状态监测(滚动轴承)。在所有案例中,控制器对误分类样本分配了比正确分类样本更多的推理步数(MNIST和轴承数据上最高达3-4倍,MIT-BIH上达1.4倍)。由此产生的ΔSP可作为检测误分类的有效安全信号(MNIST上AUROC为0.63,MIT-BIH为0.70,轴承数据为0.86)。代码与可复现性:https://github.com/vishal-1344/sci

0
下载
关闭预览

相关内容

Top
微信扫码咨询专知VIP会员