MNIST 数据集来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员. 测试集(test set) 也是同样比例的手写数字数据。

最新论文

Since deep neural networks are over-parameterized, they can memorize noisy examples. We address such memorizing issue in the presence of annotation noise. From the fact that deep neural networks cannot generalize neighborhoods of the features acquired via memorization, we hypothesize that noisy examples do not consistently incur small losses on the network under a certain perturbation. Based on this, we propose a novel training method called Learning with Ensemble Consensus (LEC) that prevents overfitting noisy examples by eliminating them using the consensus of an ensemble of perturbed networks. One of the proposed LECs, LTEC outperforms the current state-of-the-art methods on noisy MNIST, CIFAR-10, and CIFAR-100 in an efficient manner.

0+
0+
下载
预览
更多最新论文
父主题
Top