We propose a fully Bayesian approach for causal inference with multivariate categorical data based on staged tree models, a class of probabilistic graphical models capable of representing asymmetric and context-specific dependencies. To account for uncertainty in both structure and parameters, we introduce a flexible family of prior distributions over staged trees. These include product partition models to encourage parsimony, a novel distance-based prior to promote interpretable dependence patterns, and an extension that incorporates continuous covariates into the learning process. Posterior inference is achieved via a tailored Markov Chain Monte Carlo algorithm with split-and-merge moves, yielding posterior samples of staged trees from which average treatment effects and uncertainty measures are derived. Posterior summaries and uncertainty measures are obtained via techniques from the Bayesian nonparametrics literature. Two case studies on electronic fetal monitoring and cesarean delivery and on anthracycline therapy and cardiac dysfunction in breast cancer illustrate the methods.
翻译:我们提出了一种基于阶段树模型的多元分类数据因果推断的完全贝叶斯方法,阶段树模型是一类能够表示非对称和上下文特定依赖关系的概率图模型。为同时考虑结构和参数的不确定性,我们引入了一个灵活的阶段树先验分布族,包括鼓励简约性的乘积划分模型、一种新颖的基于距离的先验以促进可解释的依赖模式,以及将连续协变量纳入学习过程的扩展方法。后验推断通过一种定制的马尔可夫链蒙特卡洛算法实现,该算法采用分裂与合并移动,从而生成阶段树的后验样本,并从中推导出平均处理效应和不确定性度量。后验摘要和不确定性度量通过贝叶斯非参数文献中的技术获得。两个案例研究——关于电子胎儿监护与剖宫产,以及关于乳腺癌中蒽环类药物疗法与心功能障碍——展示了该方法的应用。