We investigate whether continuous-control policies can be represented and learned as discrete logic circuits instead of continuous neural networks. We introduce Differentiable Weightless Controllers (DWCs), a symbolic-differentiable architecture that maps real-valued observations to actions using thermometer-encoded inputs, sparsely connected boolean lookup-table layers, and lightweight action heads. DWCs can be trained end-to-end by gradient-based techniques, yet compile directly into FPGA-compatible circuits with few- or even single-clock-cycle latency and nanojoule-level energy cost per action. Across five MuJoCo benchmarks, including high-dimensional Humanoid, DWCs achieve returns competitive with weight-based policies (full precision or quantized neural networks), matching performance on four tasks and isolating network capacity as the key limiting factor on HalfCheetah. Furthermore, DWCs exhibit structurally sparse and interpretable connectivity patterns, enabling a direct inspection of which input thresholds influence control decisions.


翻译:本研究探讨连续控制策略是否能够以离散逻辑电路而非连续神经网络的形式进行表示与学习。我们提出可微分无权重控制器(DWCs),这是一种符号-可微分架构,通过温度计编码输入、稀疏连接的布尔查找表层以及轻量级动作头,将实值观测映射为动作。DWCs可通过基于梯度的技术进行端到端训练,同时能直接编译为FPGA兼容电路,实现每动作仅需极少(甚至单时钟周期)延迟与纳焦级能量消耗。在包括高维度Humanoid在内的五个MuJoCo基准测试中,DWCs取得的回报与基于权重的策略(全精度或量化神经网络)相当,在四项任务中表现匹配,并揭示网络容量是HalfCheetah任务中的关键限制因素。此外,DWCs展现出结构稀疏且可解释的连接模式,使得能够直接检视哪些输入阈值影响控制决策。

0
下载
关闭预览

相关内容

【CVPR2020-旷视】DPGN:分布传播图网络的小样本学习
专知会员服务
28+阅读 · 2020年4月1日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
VIP会员
相关资讯
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员