Many varieties of cross validation would be statistically appealing for the estimation of smoothing and other penalized regression hyperparameters, were it not for the high cost of evaluating such criteria. Here it is shown how to efficiently and accurately compute and optimize a broad variety of cross validation criteria for a wide range of models estimated by minimizing a quadratically penalized loss. The leading order computational cost of hyperparameter estimation is made comparable to the cost of a single model fit given hyperparameters. In many cases this represents an $O(n)$ computational saving when modelling $n$ data. This development makes if feasible, for the first time, to use leave-out-neighbourhood cross validation to deal with the wide spread problem of un-modelled short range autocorrelation which otherwise leads to underestimation of smoothing parameters. It is also shown how to accurately quantifying uncertainty in this case, despite the un-modelled autocorrelation. Practical examples are provided including smooth quantile regression, generalized additive models for location scale and shape, and focussing particularly on dealing with un-modelled autocorrelation.


翻译:许多交叉验证方法在估计平滑参数及其他惩罚回归超参数时具有统计上的吸引力,但评估这些准则的高昂成本限制了其应用。本文展示了如何高效且精确地计算和优化针对通过最小化二次惩罚损失估计的广泛模型类别的多种交叉验证准则。超参数估计的计算成本被降低至与给定超参数下的单次模型拟合成本相当。在许多情况下,当对n个数据进行建模时,这代表了O(n)量级的计算节省。这一进展首次使得利用留出邻域交叉验证来处理普遍存在的未建模短程自相关问题变得可行,该问题原本会导致平滑参数的低估。本文还展示了如何在存在未建模自相关的情况下精确量化不确定性。研究提供了包括平滑分位数回归、位置尺度与形状的广义可加模型在内的实际案例,并特别聚焦于处理未建模自相关问题。

0
下载
关闭预览

相关内容

交叉验证,有时也称为旋转估计或样本外测试,是用于评估统计结果如何的各种类似模型验证技术中的任何一种分析将概括为一个独立的数据集。它主要用于设置,其目的是预测,和一个想要估计如何准确地一个预测模型在实践中执行。在预测问题中,通常会给模型一个已知数据的数据集,在该数据集上进行训练(训练数据集)以及未知数据(或首次看到的数据)的数据集(根据该数据集测试模型)(称为验证数据集或测试集)。交叉验证的目标是测试模型预测未用于估计数据的新数据的能力,以发现诸如过度拟合或选择偏倚之类的问题,并提供有关如何进行建模的见解。该模型将推广到一个独立的数据集(例如,未知数据集,例如来自实际问题的数据集)。 一轮交叉验证涉及分割一个样品的数据到互补的子集,在一个子集执行所述分析(称为训练集),以及验证在另一子集中的分析(称为验证集合或测试集)。为了减少可变性,在大多数方法中,使用不同的分区执行多轮交叉验证,并将验证结果组合(例如取平均值)在各轮中,以估计模型的预测性能。 总而言之,交叉验证结合了预测中适用性的度量(平均),以得出模型预测性能的更准确估计。
【NeurIPS2019】图变换网络:Graph Transformer Network
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员