We introduce an algorithm for estimating the trace of a matrix function f(A) using implicit products with a symmetric matrix A. Existing methods for implicit trace estimation of a matrix function tend to treat matrix-vector products with f(A) as a black-box to be computed by a Krylov subspace method. Like other algorithms for implicit trace estimation, our approach is based on a combination of deflation and stochastic trace estimation. However, we take a closer look at how products with f(A) are integrated into these approaches which enables several efficiencies not present in previously studied methods.


翻译:我们采用了一种算法来估计矩阵函数f(A)的痕量,使用含有对称矩阵表A的隐性产品估算矩阵函数f(A)的痕量。 现有的矩阵函数隐含追踪估计方法往往将f(A)的矩阵矢量产品作为黑箱处理,由Krylov子空间方法计算。 与其他隐含追踪估计的算法一样,我们的方法以通缩和随机跟踪估计相结合为基础。然而,我们更仔细地研究F(A)的产品如何融入这些方法,这些方法使得以前研究过的方法中不存在的几种效率。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员