Recently, growing consumer awareness of food quality and sustainability has led to a rising demand for effective food authentication methods. Vibrational spectroscopy techniques have emerged as a promising tool for collecting large volumes of data to detect food adulteration. However, spectroscopic data pose significant challenges from a statistical viewpoint, highlighting the need for more sophisticated modeling strategies. To address these challenges, in this work we propose a latent variable model specifically tailored for food adulterant detection, while accommodating the features of spectral data. Our proposal offers greater granularity with respect to existing approaches, since it does not only identify adulterated samples but also estimates the level of adulteration, and detects the spectral regions most affected by the adulterant. Consequently, the methodology offers deeper insights, and could facilitate the development of portable and faster instruments for efficient data collection in food authenticity studies. The method is applied to both synthetic and real honey mid-infrared spectroscopy data, delivering precise estimates of the adulteration level and accurately identifying which portions of the spectra are most impacted by the adulterant.


翻译:暂无翻译

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Top
微信扫码咨询专知VIP会员