We investigate the sample complexity of bounded two-layer neural networks using different activation functions. In particular, we consider the class $$ \mathcal{H} = \left\{\textbf{x}\mapsto \langle \textbf{v}, \sigma \circ W\textbf{b} + \textbf{b} \rangle : \textbf{b}\in\mathbb{R}^d, W \in \mathbb{R}^{\mathcal{T}\times d}, \textbf{v} \in \mathbb{R}^{\mathcal{T}}\right\} $$ where the spectral norm of $W$ and $\textbf{v}$ is bounded by $O(1)$, the Frobenius norm of $W$ is bounded from its initialization by $R > 0$, and $\sigma$ is a Lipschitz activation function. We prove that if $\sigma$ is element-wise, then the sample complexity of $\mathcal{H}$ has only logarithmic dependency in width and that this complexity is tight, up to logarithmic factors. We further show that the element-wise property of $\sigma$ is essential for a logarithmic dependency bound in width, in the sense that there exist non-element-wise activation functions whose sample complexity is linear in width, for widths that can be up to exponential in the input dimension. For the upper bound, we use the recent approach for norm-based bounds named Approximate Description Length (ADL) by arXiv:1910.05697. We further develop new techniques and tools for this approach that will hopefully inspire future works.


翻译:我们使用不同的激活功能调查两层神经网络的绑定复杂性。 特别是, 我们考虑类 $\ mathcal{H} =\ left{ textbf{ x\\\ mappsto\ langle\ textbf{v},\ sgma\ crc W\ textbf{b} +\ textbf{b}\ rangle:\ textb{ b\ in\ mathb{R} d, W\in\ mathbb{ rlight_ rmalthb{Rämathcal{T_ H} { textfrlight} =left\ mortbb{x{x} {xleft}, $W和 ltblentbff{v} 的光谱标准是 $(1)美元, $Frobenius 的规范从初始化到 $R >, Wirealblybly bld_ld_lock_licks yal_bs comma_brick_brough 。 我们证明, lixxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx的精基的精基的精基的精基的精度, 缩缩缩缩缩算法, 缩算法是最近的缩缩缩算法。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员