Following a growing number of studies that, over the past 15 years, have established entropy inequalities via ideas and tools from additive combinatorics, in this work we obtain a number of new bounds for the differential entropy of sums, products, and sum-product combinations of continuous random variables. Partly motivated by recent work by Goh on the discrete entropic version of the notion of "additive energy", we introduce the additive energy of pairs of continuous random variables and prove various versions of the statement that "the additive energy is large if and only if the entropy of the sum is small", along with a version of the Balog-Szemerédi-Gowers theorem for differential entropy. Then, motivated in part by recent work by Máthé and O'Regan, we establish a series of new differential entropy inequalities for products and sum-product combinations of continuous random variables. In particular, we prove a new, general, ring Plünnecke-Ruzsa entropy inequality. We briefly return to the case of discrete entropy and provide a characterization of discrete random variables with "large doubling", analogous to Tao's Freiman-type inverse sumset theory for the case of small doubling. Finally, we consider the natural entropic analog of the Erdös-Szemerédi sum-product phenomenon for integer-valued random variables. We show that, if it does hold, then the range of parameters for which it does would necessarily be significantly more restricted than its anticipated combinatorial counterpart.
翻译:随着过去15年来利用加性组合学思想与工具建立熵不等式的研究日益增多,本文针对连续随机变量的和、积以及和-积组合的微分熵,获得了一系列新的界。部分受到Goh近期关于离散熵版本“加性能量”概念研究的启发,我们引入了连续随机变量对的加性能量,并证明了多种形式的“加性能量大当且仅当和的熵小”的论断,同时给出了微分熵的Balog-Szemerédi-Gowers定理的一个版本。随后,部分基于Máthé与O'Regan的最新工作,我们建立了一系列关于连续随机变量积及和-积组合的微分熵不等式。特别地,我们证明了一个新的、广义的环Plünnecke-Ruzsa熵不等式。我们简要回归离散熵情形,类比Tao关于小倍数的Freiman型逆和集理论,给出了具有“大倍数”特征的离散随机变量的刻画。最后,我们探讨了整数值随机变量Erdös-Szemerédi和积现象的自然熵类比。研究表明,若该现象成立,则其成立的参数范围将必然比预期组合对应情形受到显著更严格的限制。