This paper introduces a modular and scalable design optimization framework for the wing design process that enables faster early-phase design while ensuring aerodynamic stability. The pipeline starts with the generation of initial wing geometries and then proceeds to optimize the wing using several algorithms. Aerodynamic performance is assessed using a Vortex Lattice Method (VLM) applied to a carefully selected dataset of wing configurations. These results are employed to develop surrogate neural network models, which can predict lift and drag rapidly and accurately. The stability evaluation is implemented by setting the control surfaces and components to fixed positions in order to have realistic flight dynamics. The approach unifies and compares several optimization techniques, including Particle Swarm Optimization (PSO), Genetic Algorithms (GA), gradient-based MultiStart methods, Bayesian optimization, and Lipschitz optimization. Each method ensures constraint management via adaptive strategies and penalty functions, where the targets for lift and design feasibility are enforced. The progression of aerodynamic characteristics and geometries over the optimization iterations will be investigated in order to clarify each algorithm's convergence characteristics and performance efficiency. Our results show improvement in aerodynamic qualities and robust stability properties, offering a mechanism for wing design at speed and precision. In the interest of reproducibility and community development, the complete implementation is publicly available at Github.


翻译:本文提出了一种模块化、可扩展的机翼设计优化框架,该框架能够在确保气动稳定性的同时加速早期设计进程。该流程从生成初始机翼几何外形开始,随后采用多种算法对机翼进行优化。气动性能评估通过将涡格法应用于精心筛选的机翼构型数据集来实现。这些结果被用于构建代理神经网络模型,该模型能够快速准确地预测升力和阻力。稳定性评估通过将控制面和组件设定至固定位置来实现,以确保获得真实的飞行动力学特性。本方法整合并比较了多种优化技术,包括粒子群优化、遗传算法、基于梯度的多起点方法、贝叶斯优化以及利普希茨优化。每种方法均通过自适应策略和罚函数实现约束管理,从而确保升力目标和设计可行性要求。通过研究优化迭代过程中气动特性与几何外形的演变规律,以阐明各算法的收敛特性与性能效率。研究结果表明,该方法在气动品质与稳健稳定性方面均取得提升,为机翼设计提供了兼具速度与精度的实现机制。为促进可重复性与社区发展,完整实现代码已在Github开源。

0
下载
关闭预览

相关内容

设计是对现有状的一种重新认识和打破重组的过程,设计让一切变得更美。
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
VIP会员
相关资讯
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员