Spatial transcriptomics enables gene expression profiling with spatial context, offering unprecedented insights into the tissue microenvironment. However, most computational models treat genes as isolated numerical features, ignoring the rich biological semantics encoded in their symbols. This prevents a truly deep understanding of critical biological characteristics. To overcome this limitation, we present SemST, a semantic-guided deep learning framework for spatial transcriptomics data clustering. SemST leverages Large Language Models (LLMs) to enable genes to "speak" through their symbolic meanings, transforming gene sets within each tissue spot into biologically informed embeddings. These embeddings are then fused with the spatial neighborhood relationships captured by Graph Neural Networks (GNNs), achieving a coherent integration of biological function and spatial structure. We further introduce the Fine-grained Semantic Modulation (FSM) module to optimally exploit these biological priors. The FSM module learns spot-specific affine transformations that empower the semantic embeddings to perform an element-wise calibration of the spatial features, thus dynamically injecting high-order biological knowledge into the spatial context. Extensive experiments on public spatial transcriptomics datasets show that SemST achieves state-of-the-art clustering performance. Crucially, the FSM module exhibits plug-and-play versatility, consistently improving the performance when integrated into other baseline methods.
翻译:空间转录组学技术能够在保留空间背景的条件下进行基因表达谱分析,为组织微环境研究提供了前所未有的洞察。然而,现有计算模型大多将基因视为孤立的数值特征,忽略了基因符号中蕴含的丰富生物学语义,这阻碍了对关键生物学特性的深入理解。为突破这一局限,本文提出SemST——一种面向空间转录组学数据聚类的语义引导深度学习框架。SemST利用大语言模型(LLMs)使基因能够通过其符号意义“开口说话”,将每个组织点位内的基因集合转化为具有生物学信息指导的嵌入表示。这些嵌入表示随后与图神经网络(GNNs)捕获的空间邻域关系进行融合,实现了生物学功能与空间结构的有机整合。我们进一步提出细粒度语义调制(FSM)模块,以最优方式利用这些生物学先验知识。该模块通过学习点位特定的仿射变换,使语义嵌入能够对空间特征执行逐元素校准,从而将高阶生物学知识动态注入空间上下文。在公开空间转录组学数据集上的大量实验表明,SemST实现了最先进的聚类性能。值得注意的是,FSM模块展现出即插即用的通用性,在集成到其他基线方法中时能持续提升其性能。