We introduce shielded Langevin Monte Carlo (LMC), a constrained sampler inspired by navigation functions, capable of sampling from unnormalized target distributions defined over punctured supports. In other words, this approach samples from non-convex spaces defined as convex sets with convex holes. This defines a novel and challenging problem in constrained sampling. To do so, the sampler incorporates a combination of a spatially adaptive temperature and a repulsive drift to ensure that samples remain within the feasible region. Experiments on a 2D Gaussian mixture and multiple-input multiple-output (MIMO) symbol detection showcase the advantages of the proposed shielded LMC in contrast to unconstrained cases.
翻译:本文提出屏蔽朗之万蒙特卡洛采样方法,这是一种受导航函数启发的约束采样器,能够从定义在穿孔支撑集上的非归一化目标分布中进行采样。换言之,该方法可从定义为带凸孔凸集的非凸空间中进行采样。这为约束采样领域定义了一个新颖且具有挑战性的问题。为实现此目标,该采样器结合了空间自适应温度与排斥漂移项,以确保样本始终保持在可行域内。通过在二维高斯混合模型与多输入多输出符号检测任务上的实验,验证了所提出的屏蔽朗之万蒙特卡洛方法相较于无约束情形的优势。