$\renewcommand{\Re}{\mathbb{R}}$We present an efficient $O (n + 1/\varepsilon^{4.5})$-time algorithm for computing a $(1+\varepsilon$)-approximation of the minimum-volume bounding box of $n$ points in $\Re^3$. We also present a simpler algorithm (for the same purpose) whose running time is $O (n \log{n} + n / \varepsilon^3)$. We give some experimental results with implementations of various variants of the second algorithm. The implementation of the algorithm described in this paper is available online https://github.com/sarielhp/MVBB.
翻译:$\\renewcommand{\\Re}{\\mathbb{R}}$我们提出了一种高效的 $O (n + 1/\\varepsilon^{4.5})$ 时间算法,用于计算 $\\Re^3$ 中 $n$ 个点的 $(1+\\varepsilon)$ 近似最小体积包围盒。我们还提出了一种更简单的算法(用于相同目的),其运行时间为 $O (n \\log{n} + n / \\varepsilon^3)$。我们给出了第二种算法多种变体实现的实验结果。本文所述算法的实现可在 https://github.com/sarielhp/MVBB 在线获取。