Recent research has increasingly focused on the reasoning capabilities of Large Language Models (LLMs) in multi-turn interactions, as these scenarios more closely mirror real-world problem-solving. However, analyzing the intricate reasoning processes within these interactions presents a significant challenge due to complex contextual dependencies and a lack of specialized visualization tools, leading to a high cognitive load for researchers. To address this gap, we present VISTA, an web-based Visual Interactive System for Textual Analytics in multi-turn reasoning tasks. VISTA allows users to visualize the influence of context on model decisions and interactively modify conversation histories to conduct "what-if" analyses across different models. Furthermore, the platform can automatically parse a session and generate a reasoning dependency tree, offering a transparent view of the model's step-by-step logical path. By providing a unified and interactive framework, VISTA significantly reduces the complexity of analyzing reasoning chains, thereby facilitating a deeper understanding of the capabilities and limitations of current LLMs. The platform is open-source and supports easy integration of custom benchmarks and local models.
翻译:近期研究日益关注大语言模型(LLM)在多轮交互中的推理能力,因为此类场景更贴近现实世界的问题解决过程。然而,由于复杂的上下文依赖性和缺乏专用可视化工具,分析这些交互中精细的推理过程面临重大挑战,导致研究人员认知负荷较高。为弥补这一空白,我们提出VISTA——一个基于网络的多轮推理任务文本分析可视化交互系统。VISTA使用户能够可视化上下文对模型决策的影响,并通过交互式修改对话历史来对不同模型进行“假设”分析。此外,该平台可自动解析会话并生成推理依赖树,从而透明展示模型的逐步逻辑路径。通过提供统一交互框架,VISTA显著降低了分析推理链的复杂度,有助于深入理解当前LLM的能力与局限。该平台为开源系统,支持自定义基准测试与本地模型的便捷集成。