We present a dataset consisting of high-resolution images of 13 micro-PCBs captured in various rotations and perspectives relative to the camera, with each sample labeled for PCB type, rotation category, and perspective categories. We then present the design and results of experimentation on combinations of rotations and perspectives used during training and the resulting impact on test accuracy. We then show when and how well data augmentation techniques are capable of simulating rotations vs. perspectives not present in the training data. We perform all experiments using CNNs with and without homogeneous vector capsules (HVCs) and investigate and show the capsules' ability to better encode the equivariance of the sub-components of the micro-PCBs. The results of our experiments lead us to conclude that training a neural network equipped with HVCs, capable of modeling equivariance among sub-components, coupled with training on a diversity of perspectives, achieves the greatest classification accuracy on micro-PCB data.
翻译:我们展示了一个数据集,由13个微型PCB的高分辨率图像组成,这些图像在与相机不同的旋转和角度上采集,每个样本都标有多氯联苯类型、旋转类别和角度类别标签。然后我们展示了培训期间使用的旋转和视角组合实验的设计和结果,以及由此对测试准确性的影响。然后我们展示了数据增强技术何时和如何能模拟旋转与培训数据中不存在的观点。我们用CNN和没有同质矢量胶囊(HVCs)进行的所有实验,并调查和展示了胶囊更好地对微型PCB子组成部分的等值进行编码的能力。我们实验的结果使我们得出结论,培训一个配备有HVCs的神经网络,能够模拟分构件之间的平衡,同时进行关于不同视角的培训,从而实现微PCB数据的最大分类准确性。