Appropriately identifying and treating molecules and materials with significant multi-reference (MR) character is crucial for achieving high data fidelity in virtual high throughput screening (VHTS). Nevertheless, most VHTS is carried out with approximate density functional theory (DFT) using a single functional. Despite development of numerous MR diagnostics, the extent to which a single value of such a diagnostic indicates MR effect on chemical property prediction is not well established. We evaluate MR diagnostics of over 10,000 transition metal complexes (TMCs) and compare to those in organic molecules. We reveal that only some MR diagnostics are transferable across these materials spaces. By studying the influence of MR character on chemical properties (i.e., MR effect) that involves multiple potential energy surfaces (i.e., adiabatic spin splitting, $\Delta E_\mathrm{H-L}$, and ionization potential, IP), we observe that cancellation in MR effect outweighs accumulation. Differences in MR character are more important than the total degree of MR character in predicting MR effect in property prediction. Motivated by this observation, we build transfer learning models to directly predict CCSD(T)-level adiabatic $\Delta E_\mathrm{H-L}$ and IP from lower levels of theory. By combining these models with uncertainty quantification and multi-level modeling, we introduce a multi-pronged strategy that accelerates data acquisition by at least a factor of three while achieving chemical accuracy (i.e., 1 kcal/mol) for robust VHTS.


翻译:适当识别和处理具有重要多参考特性的分子和材料,对于在虚拟高吞吐量筛选中实现高数据忠诚至关重要。然而,大多数VHTS使用单一功能进行,使用大约密度功能理论(DFT)进行。尽管开发了无数MR诊断,但这种诊断的单一价值表明MR对化学财产预测的影响程度尚未确定。我们评估了10,000多个过渡金属复合体(TMCs)和与有机分子的模型相比较的MR诊断结果。我们发现,在这些材料空间中,只有部分MR诊断可转让。通过研究MM对化学特性(即MR效应)的影响,这些特性涉及多种潜在的能源表面(即,Adiabat性旋转分裂,$\Delta Eämathrm{H-L}}和电离子化潜力,我们发现,MRM(TM)的取消超过模型的累积。MRV性质差异比在预测财产预测中预测MR效应的总程度更为重要。我们通过这一观察,通过在这种观测中,我们建立稳定的MMT(即实现MMT)最低水平,同时将ED理论化模型与直接将IL级数据转换为C的模型,同时将C-I-I-I-I-I-I-I-I-I-I-IL水平,同时将这种理论水平的学习模型与E-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I

0
下载
关闭预览

相关内容

磁流变(Magnetorheological,简称MR)材料是一种流变性能可由磁场控制的新型智能材料。由于其响应快(ms量级)、可逆性好(撤去磁场后,又恢复初始状态)、以及通过调节磁场大小来控制材料的力学性能连续变化,因而近年来在汽车、建筑、振动控制等领域得到广泛应用。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
10+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
15+阅读 · 2020年12月17日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
10+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员