Off-road navigation is critical for a wide range of field robotics applications from planetary exploration to disaster response. However, it remains a longstanding challenge due to unstructured environments and the inherently complex terrain-vehicle interactions. Traditional physics-based methods struggle to accurately capture the nonlinear dynamics underlying these interactions, while purely data-driven approaches often overfit to specific motion patterns, vehicle geometries, or platforms, limiting their generalization in diverse, real-world scenarios. To address these limitations, we introduce AnyNav, a vision-based friction estimation and navigation framework grounded in neuro-symbolic principles. Our approach integrates neural networks for visual perception with symbolic physical models for reasoning about terrain-vehicle dynamics. To enable self-supervised learning in real-world settings, we adopt the imperative learning paradigm, employing bilevel optimization to train the friction network through physics-based optimization. This explicit incorporation of physical reasoning substantially enhances generalization across terrains, vehicle types, and operational conditions. Leveraging the predicted friction coefficients, we further develop a physics-informed navigation system capable of generating physically feasible, time-efficient paths together with corresponding speed profiles. We demonstrate that AnyNav seamlessly transfers from simulation to real-world robotic platforms, exhibiting strong robustness across different four-wheeled vehicles and diverse off-road environments.
翻译:越野导航对于从行星探索到灾害响应的广泛现场机器人应用至关重要。然而,由于非结构化环境以及固有的复杂地形-车辆相互作用,这仍然是一个长期存在的挑战。传统的基于物理的方法难以准确捕捉这些相互作用背后的非线性动力学,而纯粹数据驱动的方法往往过度拟合特定的运动模式、车辆几何形状或平台,限制了其在多样化现实场景中的泛化能力。为了解决这些局限性,我们提出了AnyNav,一个基于神经符号原理、以视觉为基础的摩擦估计与导航框架。我们的方法将用于视觉感知的神经网络与用于推理地形-车辆动力学的符号物理模型相结合。为了在现实世界环境中实现自监督学习,我们采用命令式学习范式,通过基于物理的优化,利用双层优化来训练摩擦网络。这种对物理推理的显式结合,显著增强了对不同地形、车辆类型和操作条件的泛化能力。利用预测的摩擦系数,我们进一步开发了一个物理信息导航系统,能够生成物理上可行、时间高效的路径以及相应的速度曲线。我们证明,AnyNav能够无缝地从仿真转移到现实世界的机器人平台,在不同的四轮车辆和多样化的越野环境中展现出强大的鲁棒性。