Medical imaging spans diverse tasks and modalities which play a pivotal role in disease diagnosis, treatment planning, and monitoring. This study presents a novel exploration, being the first to systematically evaluate segmentation, registration, and classification tasks across multiple imaging modalities. Integrating both classical and deep learning (DL) approaches in addressing brain MRI tissue segmentation, lung CT image registration, and skin lesion classification from dermoscopic images, we demonstrate the complementary strengths of these methodologies in diverse applications. For brain tissue segmentation, 3D DL models outperformed 2D and patch-based models, specifically nnU-Net achieving Dice of 0.9397, with 3D U-Net models on ResNet34 backbone, offering competitive results with Dice 0.8946. Multi-Atlas methods provided robust alternatives for cases where DL methods are not feasible, achieving average Dice of 0.7267. In lung CT registration, classical Elastix-based methods outperformed DL models, achieving a minimum Target Registration Error (TRE) of 6.68 mm, highlighting the effectiveness of parameter tuning. HighResNet performed best among DL models with a TRE of 7.40 mm. For skin lesion classification, ensembles of DL models like InceptionResNetV2 and ResNet50 excelled, achieving up to 90.44%, and 93.62% accuracies for binary and multiclass classification respectively. Also, adopting One-vs-All method, DL attained accuracies of 94.64% (mel vs. others), 95.35% (bcc vs. others), and 96.93% (scc vs. others), while ML models specifically Multi-Layer Perceptron (MLP) on handcrafted features offered interpretable alternatives with 85.04% accuracy using SMOTE for class imbalance correction on the multi-class task and 83.27% on the binary-class task. Links to source code are available on request.


翻译:暂无翻译

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员