A line of work has shown that natural text processing models are vulnerable to adversarial examples. Correspondingly, various defense methods are proposed to mitigate the threat of textual adversarial examples, eg, adversarial training, input transformations, detection, etc. In this work, we treat the optimization process for synonym substitution based textual adversarial attacks as a specific sequence of word replacement, in which each word mutually influences other words. We identify that we could destroy such mutual interaction and eliminate the adversarial perturbation by randomly substituting a word with its synonyms. Based on this observation, we propose a novel textual adversarial example detection method, termed Randomized Substitution and Vote (RS&V), which votes the prediction label by accumulating the logits of k samples generated by randomly substituting the words in the input text with synonyms. The proposed RS&V is generally applicable to any existing neural networks without modification on the architecture or extra training, and it is orthogonal to prior work on making the classification network itself more robust. Empirical evaluations on three benchmark datasets demonstrate that our RS&V could detect the textual adversarial examples more successfully than the existing detection methods while maintaining the high classification accuracy on benign samples.


翻译:一项工作表明,自然文本处理模式很容易受到对抗性实例的影响。相应的,提出了各种防御方法,以减轻文字对抗性例子的威胁,例如,对抗性训练、输入转换、检测等。在这项工作中,我们把同义替代文本对抗性攻击的优化程序作为单词替换的具体顺序,其中每个词相互影响其他词。我们确定,我们可以通过随机用同义词替换一个词来破坏这种相互互动,消除对抗性扰动。根据这一观察,我们提出了一种新颖的文字对抗性例子探测方法,称为随机替代和投票(RS&V),通过随机用同义词取代输入文本中的字词来累积 k 样本的对数来记录预测标签。提议的RS&V一般适用于任何现有的神经网络,而不对结构或额外培训进行修改,而且与以前关于使分类网络本身更稳健的工作有交织。对三种基准数据基评估显示,在保持高正义性检测方法的同时,我们现有的比较性样本能够成功地探测高的文本。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Adversarial Training for High-Stakes Reliability
Arxiv
0+阅读 · 2022年9月15日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员