With the rise and development of deep learning, computer vision has been tremendously transformed and reshaped. As an important research area in computer vision, scene text detection and recognition has been inescapably influenced by this wave of revolution, consequentially entering the era of deep learning. In recent years, the community has witnessed substantial advancements in mindset, approach and performance. This survey is aimed at summarizing and analyzing the major changes and significant progresses of scene text detection and recognition in the deep learning era. Through this article, we devote to: (1) introduce new insights and ideas; (2) highlight recent techniques and benchmarks; (3) look ahead into future trends. Specifically, we will emphasize the dramatic differences brought by deep learning and the grand challenges still remained. We expect that this review paper would serve as a reference book for researchers in this field. Related resources are also collected and compiled in our Github repository: https://github.com/Jyouhou/SceneTextPapers.

成为VIP会员查看完整内容
0
29

相关内容

机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.

0
23
下载
预览

With the rise and development of deep learning, computer vision has been tremendously transformed and reshaped. As an important research area in computer vision, scene text detection and recognition has been inescapably influenced by this wave of revolution, consequentially entering the era of deep learning. In recent years, the community has witnessed substantial advancements in mindset, approach and performance. This survey is aimed at summarizing and analyzing the major changes and significant progresses of scene text detection and recognition in the deep learning era. Through this article, we devote to: (1) introduce new insights and ideas; (2) highlight recent techniques and benchmarks; (3) look ahead into future trends. Specifically, we will emphasize the dramatic differences brought by deep learning and the grand challenges still remained. We expect that this review paper would serve as a reference book for researchers in this field. Related resources are also collected and compiled in our Github repository: https://github.com/Jyouhou/SceneTextPapers.

0
12
下载
预览
小贴士
相关VIP内容
专知会员服务
49+阅读 · 2020年6月14日
专知会员服务
41+阅读 · 2020年6月10日
专知会员服务
63+阅读 · 2020年4月23日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
53+阅读 · 2019年10月16日
开源书:PyTorch深度学习起步
专知会员服务
20+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
45+阅读 · 2019年10月11日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
7+阅读 · 2019年10月9日
相关资讯
【推荐】深度学习情感分析综述
机器学习研究会
50+阅读 · 2018年1月26日
【推荐】RNN最新研究进展综述
机器学习研究会
13+阅读 · 2018年1月6日
计算机视觉近一年进展综述
机器学习研究会
6+阅读 · 2017年11月25日
深度学习医学图像分析文献集
机器学习研究会
13+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
6+阅读 · 2017年9月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
17+阅读 · 2017年9月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
8+阅读 · 2017年9月3日
【推荐】深度学习目标检测概览
机器学习研究会
9+阅读 · 2017年9月1日
相关论文
Zobeir Raisi,Mohamed A. Naiel,Paul Fieguth,Steven Wardell,John Zelek
10+阅读 · 2020年6月8日
Image Segmentation Using Deep Learning: A Survey
Shervin Minaee,Yuri Boykov,Fatih Porikli,Antonio Plaza,Nasser Kehtarnavaz,Demetri Terzopoulos
23+阅读 · 2020年1月15日
Sicheng Zhao,Shangfei Wang,Mohammad Soleymani,Dhiraj Joshi,Qiang Ji
7+阅读 · 2019年10月3日
Scene Text Detection and Recognition: The Deep Learning Era
Shangbang Long,Xin He,Cong Yao
12+阅读 · 2019年9月5日
Kamran Kowsari,Kiana Jafari Meimandi,Mojtaba Heidarysafa,Sanjana Mendu,Laura E. Barnes,Donald E. Brown
9+阅读 · 2019年6月25日
Object Detection in 20 Years: A Survey
Zhengxia Zou,Zhenwei Shi,Yuhong Guo,Jieping Ye
32+阅读 · 2019年5月13日
Chunwei Tian,Yong Xu,Lunke Fei,Ke Yan
3+阅读 · 2018年10月11日
Deep Learning for Generic Object Detection: A Survey
Li Liu,Wanli Ouyang,Xiaogang Wang,Paul Fieguth,Jie Chen,Xinwang Liu,Matti Pietikäinen
7+阅读 · 2018年9月6日
Minghui Liao,Zhen Zhu,Baoguang Shi,Gui-song Xia,Xiang Bai
12+阅读 · 2018年3月14日
Daniel Oñoro-Rubio,Roberto J. López-Sastre,Carolina Redondo-Cabrera,Pedro Gil-Jiménez
5+阅读 · 2018年1月24日
Top