Learning accurate and stable time-advancement operators for nonlinear partial differential equations (PDEs) remains challenging, particularly for chaotic, stiff, and long-horizon dynamical systems. While neural operator methods such as the Fourier Neural Operator (FNO) and Koopman-inspired extensions achieve good short-term accuracy, their long-term stability is often limited by unconstrained latent representations and cumulative rollout errors. In this work, we introduce an inverse scattering inspired Fourier Neural Operator(IS-FNO), motivated by the reversibility and spectral evolution structure underlying the classical inverse scattering transform. The proposed architecture enforces a near-reversible pairing between lifting and projection maps through an explicitly invertible neural transformation, and models latent temporal evolution using exponential Fourier layers that naturally encode linear and nonlinear spectral dynamics. We systematically evaluate IS-FNO against baseline FNO and Koopman-based models on a range of benchmark PDEs, including the Michelson-Sivashinsky and Kuramoto-Sivashinsky equations (in one and two dimensions), as well as the integrable Korteweg-de Vries and Kadomtsev-Petviashvili equations. The results demonstrate that IS-FNO achieves lower short-term errors and substantially improved long-horizon stability in non-stiff regimes. For integrable systems, reduced IS-FNO variants that embed analytical scattering structure retain competitive long-term accuracy despite limited model capacity. Overall, this work shows that incorporating physical structure -- particularly reversibility and spectral evolution -- into neural operator design significantly enhances robustness and long-term predictive fidelity for nonlinear PDE dynamics.
翻译:学习非线性偏微分方程(PDEs)精确且稳定的时间推进算子仍然具有挑战性,特别是对于混沌、刚性和长时程动力系统。尽管傅里叶神经算子(FNO)和受Koopman理论启发的扩展方法等神经算子方法在短期精度上表现良好,但其长期稳定性往往受到无约束的潜在表示和累积推演误差的限制。在本研究中,我们提出了一种受逆散射启发的傅里叶神经算子(IS-FNO),其设计灵感来源于经典逆散射变换所蕴含的可逆性和谱演化结构。该架构通过一个显式可逆的神经变换,在提升映射和投影映射之间强制形成一种近似可逆的配对关系,并利用指数傅里叶层对潜在时间演化进行建模,这些层自然地编码了线性和非线性谱动力学。我们在包括一维和二维Michelson-Sivashinsky方程、Kuramoto-Sivashinsky方程,以及可积的Korteweg-de Vries方程和Kadomtsev-Petviashvili方程在内的一系列基准PDE上,系统地将IS-FNO与基线FNO及基于Koopman的模型进行了比较。结果表明,在非刚性区域,IS-FNO实现了更低的短期误差和显著改善的长时程稳定性。对于可积系统,尽管模型容量有限,但嵌入了解析散射结构的简化IS-FNO变体仍保持了有竞争力的长期精度。总体而言,这项工作表明,将物理结构——特别是可逆性和谱演化——融入神经算子设计中,能显著增强非线性PDE动力学的鲁棒性和长期预测保真度。