For any finite group $G$, any transitive $G$-set $X$ and any field ${\Bbb F}$, we consider the vector space ${\Bbb F}^X$ of all functions from $X$ to ${\Bbb F}$, which is a $G$-space isomorphic to the permutation ${\Bbb F} G$-module ${\Bbb F} X$. When the group algebra ${\Bbb F} G$ is semisimple and split, we find a specific basis $\widehat X$ of ${\Bbb F}^X$ and, for $f\in{\Bbb F}^X$, construct the Fourier transform $\widehat f\in{\Bbb F}^{\widehat X}$. We define the rank support $\mbox{rk-supp}(\widehat f)$ and prove that $\mbox{rk-supp}(\widehat f)=\dim {\Bbb F} G f$, where ${\Bbb F} G f$ is the submodule of ${\Bbb F} X$ generated by the element $f=\sum_{x\in X}f(x)x$. Next, we extend and strengthen the sharpened uncertainty principle for finite abelian groups, established by Feng, Hollmann, and Xiang in 2019, to a broader framework and a sharp version. For $0\ne f\in{\Bbb F}^X$, we construct a block $X_{{\rm supp}(f)}$ of $X$ and a subset ${\mathscr S}'^{-\!1}$ of $G$ determined by the support ${\rm supp}(f)$ of $f$, and show that $\dim{\Bbb F} Gf-\dim{\Bbb F}{\mathscr S}'^{-\!1}\!f\ge 1$ and $$ |{\rm supp}(f)|\cdot \dim{\Bbb F} Gf \ge |X|+ (\!\dim{\Bbb F} Gf-\dim{\Bbb F}{\mathscr S}'^{-1}f) \cdot|{\rm supp}(f)| -|X_{{\rm supp}(f)}|, $$ where ${\Bbb F}{\mathscr S}'^{-1}f$ denotes the subspace of ${\Bbb F}X$ spanned by the subset ${\mathscr S}'^{-1}f=\{αf\,|\,α\in{\mathscr S}'^{-1}\}\subseteq{\Bbb F} X$. We provide necessary and sufficient conditions for the above inequality to achieve equality. As corollaries, we derive many sharpened or classical versions of the finite-dimensional uncertainty principle, address an open question posed by Feng, Hollmann, and Xiang. When $|G|$ is a prime and $X=G$, we give a lower bound on $\dim {\Bbb F}Gf$ that recovers Tao's 2005 strong uncertainty principle, along with a precise characterization of the equality case.
翻译:对于任意有限群$G$、任意传递$G$-集$X$以及任意域${\\Bbb F}$,我们考虑由所有从$X$到${\\Bbb F}$的函数构成的向量空间${\\Bbb F}^X$,这是一个与置换${\\Bbb F} G$-模${\\Bbb F} X$同构的$G$-空间。当群代数${\\Bbb F} G$是半单且分裂时,我们找到${\\Bbb F}^X$的一个特定基$\\widehat X$,并对任意$f\\in{\\Bbb F}^X$构造其傅里叶变换$\\widehat f\\in{\\Bbb F}^{\\widehat X}$。我们定义秩支撑$\\mbox{rk-supp}(\\widehat f)$并证明$\\mbox{rk-supp}(\\widehat f)=\\dim {\\Bbb F} G f$,其中${\\Bbb F} G f$是由元素$f=\\sum_{x\\in X}f(x)x$生成的${\\Bbb F} X$的子模。接着,我们将冯、霍尔曼和向在2019年为有限阿贝尔群建立的尖锐化不确定性原理扩展并强化到一个更广泛的框架和一个尖锐版本。对于$0\\ne f\\in{\\Bbb F}^X$,我们构造$X$的一个块$X_{{\\rm supp}(f)}$以及由$f$的支撑集${\\rm supp}(f)$确定的$G$的一个子集${\\mathscr S}'^{-\\!1}$,并证明$\\dim{\\Bbb F} Gf-\\dim{\\Bbb F}{\\mathscr S}'^{-\\!1}\\!f\\ge 1$且 $$ |{\\rm supp}(f)|\\cdot \\dim{\\Bbb F} Gf \\ge |X|+ (\\!\\dim{\\Bbb F} Gf-\\dim{\\Bbb F}{\\mathscr S}'^{-1}f) \\cdot|{\\rm supp}(f)| -|X_{{\\rm supp}(f)}|, $$ 其中${\\Bbb F}{\\mathscr S}'^{-1}f$表示由子集${\\mathscr S}'^{-1}f=\\{\\alpha f\\,|\\,\\alpha\\in{\\mathscr S}'^{-1}\\}\\subseteq{\\Bbb F} X$张成的${\\Bbb F}X$的子空间。我们给出了上述不等式取等号的充分必要条件。作为推论,我们导出了许多尖锐化或经典版本的有限维不确定性原理,并回答了冯、霍尔曼和向提出的一个开放性问题。当$|G|$为素数且$X=G$时,我们给出了$\\dim {\\Bbb F}Gf$的一个下界,该下界恢复了陶哲轩2005年的强不确定性原理,并给出了等号情况的精确刻画。