Machine learning (ML) underpins foundation models in finance, healthcare, and critical infrastructure, making them targets for data poisoning, model extraction, prompt injection, automated jailbreaking, and preference-guided black-box attacks that exploit model comparisons. Larger models can be more vulnerable to introspection-driven jailbreaks and cross-modal manipulation. Traditional cybersecurity lacks ML-specific threat modeling for foundation, multimodal, and RAG systems. Objective: Characterize ML security risks by identifying dominant TTPs, vulnerabilities, and targeted lifecycle stages. Methods: We extract 93 threats from MITRE ATLAS (26), AI Incident Database (12), and literature (55), and analyze 854 GitHub/Python repositories. A multi-agent RAG system (ChatGPT-4o, temp 0.4) mines 300+ articles to build an ontology-driven threat graph linking TTPs, vulnerabilities, and stages. Results: We identify unreported threats including commercial LLM API model stealing, parameter memorization leakage, and preference-guided text-only jailbreaks. Dominant TTPs include MASTERKEY-style jailbreaking, federated poisoning, diffusion backdoors, and preference optimization leakage, mainly impacting pre-training and inference. Graph analysis reveals dense vulnerability clusters in libraries with poor patch propagation. Conclusion: Adaptive, ML-specific security frameworks, combining dependency hygiene, threat intelligence, and monitoring, are essential to mitigate supply-chain and inference risks across the ML lifecycle.
翻译:机器学习(ML)作为金融、医疗和关键基础设施领域基础模型的支撑技术,使其成为数据投毒、模型提取、提示注入、自动化越狱以及利用模型比较的偏好引导黑盒攻击的目标。规模更大的模型可能更容易受到内省驱动越狱和跨模态操纵的影响。传统网络安全缺乏针对基础模型、多模态和RAG系统的ML专用威胁建模。目标:通过识别主要战术技术与程序(TTP)、漏洞及目标生命周期阶段,系统刻画ML安全风险。方法:我们从MITRE ATLAS(26项)、AI事件数据库(12项)及文献(55项)中提取93个威胁,并分析了854个GitHub/Python代码库。采用多智能体RAG系统(ChatGPT-4o,温度参数0.4)挖掘300余篇文献,构建了关联TTP、漏洞与阶段的本体驱动威胁图谱。结果:我们发现了未公开报道的威胁,包括商业LLM API模型窃取、参数记忆泄漏及偏好引导纯文本越狱。主要TTP涵盖MASTERKEY式越狱、联邦投毒、扩散后门及偏好优化泄漏,主要影响预训练与推理阶段。图谱分析揭示了补丁传播薄弱的代码库中存在密集漏洞集群。结论:结合依赖项治理、威胁情报与监控的自适应ML专用安全框架,对于缓解ML全生命周期中的供应链与推理风险至关重要。