Motivated by the constructions of binary sequences by utilizing the cyclic elliptic function fields over the finite field $\mathbb{F}_{2^{n}}$ by Jin \textit{et al.} in [IEEE Trans. Inf. Theory 71(8), 2025], we extend the construction to the cyclic elliptic function fields with odd characteristic by using the quadratic residue map $η$ instead of the trace map used therein. For any cyclic elliptic function field with $q+1+t$ rational points and any positive integer $d$ with $\gcd(d, q+1+t)=1$, we construct a new family of binary sequences of length $q+1+t$, size $q^{d-1}-1$, balance upper bounded by $(d+1)\cdot\lfloor2\sqrt{q}\rfloor+|t|+d,$ the correlation upper bounded by $(2d+1)\cdot\lfloor2\sqrt{q}\rfloor+|t|+2d$ and the linear complexity lower bounded by $\frac{q+1+2t-d-(d+1)\cdot\lfloor2\sqrt{q}\rfloor}{d+d\cdot\lfloor2\sqrt{q}\rfloor}$ where $\lfloor x\rfloor$ stands for the integer part of $x\in\mathbb{R}$.
翻译:受 Jin 等人在 [IEEE Trans. Inf. Theory 71(8), 2025] 中利用有限域 $\mathbb{F}_{2^{n}}$ 上的循环椭圆函数域构造二进制序列的启发,我们将该构造推广至奇特征循环椭圆函数域,并使用二次剩余映射 $η$ 替代原文中的迹映射。对于任意具有 $q+1+t$ 个有理点的循环椭圆函数域,以及满足 $\gcd(d, q+1+t)=1$ 的任意正整数 $d$,我们构造了一族长度为 $q+1+t$、规模为 $q^{d-1}-1$ 的新型二进制序列,其平衡度上界为 $(d+1)\cdot\lfloor2\sqrt{q}\rfloor+|t|+d$,相关值上界为 $(2d+1)\cdot\lfloor2\sqrt{q}\rfloor+|t|+2d$,线性复杂度下界为 $\frac{q+1+2t-d-(d+1)\cdot\lfloor2\sqrt{q}\rfloor}{d+d\cdot\lfloor2\sqrt{q}\rfloor}$,其中 $\lfloor x\rfloor$ 表示 $x\in\mathbb{R}$ 的整数部分。