We consider the problem where $n$ clients transmit $d$-dimensional real-valued vectors using only $d(1+o(1))$ bits each, in a manner that allows a receiver to approximately reconstruct their mean. Such compression problems arise in federated and distributed learning, as well as in other domains. We provide novel mathematical results and derive corresponding new algorithms that outperform previous compression algorithms in accuracy and computational efficiency. We evaluate our methods on a collection of distributed and federated learning tasks, using a variety of datasets, and show a consistent improvement over the state of the art.


翻译:我们考虑了这样的问题:一美元客户只用每张(1+o(1))美元来传输以美元计算的维维值实际值矢量,使接收者能够大致重建其平均值。这种压缩问题出现在联盟和分布式学习以及其他领域。我们提供了新的数学结果,并得出了在准确性和计算效率方面比以往压缩算法更好的相应的新算法。我们利用各种数据集,评估了我们收集分布式和联合学习任务的方法,并展示了与最新技术相比的不断进步。

0
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Distributed Adaptive Huber Regression
Arxiv
0+阅读 · 2021年7月6日
Arxiv
0+阅读 · 2021年7月6日
Arxiv
0+阅读 · 2021年7月5日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员