Voxelized vector field data consists of a vector field over a high dimensional lattice. The lattice consists of integer coordinates called voxels. The voxelized vector field assigns a vector at each voxel. This data type encompasses images, tensors, and voxel data. Assume there is a nice energy function on the vector field. We consider the problem of lossy compression of voxelized vector field data in Shannon's rate-distortion framework. This means the data is compressed and then decompressed up to an error bound on the energy distortion at each voxel. Our first result is that under general conditions, lossy compression of voxelized vector fields is undecidable to compute. This is caused by having an infinite number of Euclidean vectors. We formulate this problem instead in terms of clustering the finite number of indices of a voxelized vector field by boxes. We call this problem the $(k,D)$-RectLossyVVFCompression problem. We show four main results about the $(k,D)$-RectLossyVVFCompression problem. The first is that it is decidable. The second is that decompression for this problem is polynomial time tractable. This means that the only obstruction to a tractable solution of the $(k,D)$-RectLossyVVFCompression problem lies in the compression stage. This is shown by the two hardness results about the compression stage. We show that the compression stage is NP-Hard to compute exactly and that it is even APX-Hard to approximate for $k,D\geq 2$. Assuming $P\neq NP$, this shows that when $k,D \geq 2$ there can be no exact polynomial time algorithm nor can there even be a PTAS approximation algorithm for the $(k,D)$-RectLossyVVFCompression problem.


翻译:体素化矢量场数据由定义在高维格点上的矢量场构成。该格点由称为体素的整数坐标组成。体素化矢量场为每个体素分配一个矢量。此类数据类型涵盖图像、张量和体素数据。假设矢量场上存在一个良好的能量函数。我们在香农的率失真框架下考虑体素化矢量场数据的有损压缩问题。这意味着数据被压缩后解压缩,需满足每个体素上能量失真的误差界限。我们的第一个结果表明,在一般条件下,体素化矢量场的有损压缩问题是不可判定的。这是由于存在无限个欧几里得矢量所致。为此,我们转而通过盒子对体素化矢量场的有限索引进行聚类来重新表述该问题,并将其称为$(k,D)$-矩形有损体素矢量场压缩问题。我们针对该问题展示了四个主要结果:第一,该问题是可判定的;第二,其解压缩阶段具有多项式时间可解性。这意味着$(k,D)$-矩形有损体素矢量场压缩问题的唯一计算障碍在于压缩阶段。关于压缩阶段的两个硬度结果证实了这一点:我们证明压缩阶段在精确计算上是NP-Hard的,且当$k,D\\geq 2$时,其近似计算甚至是APX-Hard的。在假设$P\\neq NP$的前提下,这表明当$k,D \\geq 2$时,$(k,D)$-矩形有损体素矢量场压缩问题既不存在精确的多项式时间算法,也不存在PTAS近似算法。

0
下载
关闭预览

相关内容

【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
【NeurIPS 2021】学会学习图拓扑
专知会员服务
25+阅读 · 2021年10月22日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
【NeurIPS 2021】学会学习图拓扑
专知会员服务
25+阅读 · 2021年10月22日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员