We prove that for any $k\geq3$ for clause/variable ratios up to the Gibbs uniqueness threshold of the corresponding Galton-Watson tree, the number of satisfying assignments of random $k$-SAT formulas is given by the `replica symmetric solution' predicted by physics methods [Monasson, Zecchina: Phys. Rev. Lett. (1996)]. Furthermore, while the Gibbs uniqueness threshold is still not known precisely for any $k\geq3$, we derive new lower bounds on this threshold that improve over prior work [Montanari and Shah: SODA (2007)].The improvement is significant particularly for small $k$.


翻译:我们证明,对于任意k≥3,在对应Galton-Watson树的吉布斯唯一性阈值以下的子句/变量比范围内,随机k-SAT公式的可满足赋值数量由物理方法预测的'副本对称解'给出[Monasson, Zecchina: Phys. Rev. Lett. (1996)]。此外,虽然对于任意k≥3,吉布斯唯一性阈值的确切值仍未知,但我们推导了该阈值的新下界,改进了先前的研究成果[Montanari and Shah: SODA (2007)]。该改进对于较小的k值尤为显著。

0
下载
关闭预览

相关内容

NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
26+阅读 · 2021年8月11日
专知会员服务
50+阅读 · 2021年6月2日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关VIP内容
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
26+阅读 · 2021年8月11日
专知会员服务
50+阅读 · 2021年6月2日
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员