Stochastic dominance (SD) provides a quantile-based partial ordering of random variables and has broad applications. Its extension to multivariate settings, however, is challenging due to the lack of a canonical ordering in $\mathbb{R}^d$ ($d \ge 2$) and the set-valued character of multivariate quantiles. Based on the multivariate center-outward quantile function in Hallin et al. (2021), this paper proposes new first- and second-order multivariate stochastic dominance (MSD) concepts through comparing contribution functions defined over quantile contours and regions. To address computational and inferential challenges, we incorporate entropy-regularized optimal transport, which ensures faster convergence rate and tractable estimation. We further develop consistent Kolmogorov-Smirnov and Cramér- von Mises type test statistics for MSD, establish bootstrap validity, and demonstrate through extensive simulations good finite-sample performance of the tests. Our approach offers a theoretically rigorous, and computationally feasible solution for comparing multivariate distributions.
翻译:随机占优(SD)提供了一种基于分位数的随机变量偏序关系,具有广泛的应用。然而,将其扩展到多元设置具有挑战性,原因在于 $\mathbb{R}^d$($d \ge 2$)中缺乏规范的排序以及多元分位数的集值特性。基于 Hallin 等人(2021)提出的多元中心向外分位数函数,本文通过比较定义在分位数等高线和区域上的贡献函数,提出了新的一阶和二阶多元随机占优(MSD)概念。为应对计算和推断方面的挑战,我们引入了熵正则化最优传输,这确保了更快的收敛速度和易于处理的估计。我们进一步为 MSD 开发了一致的 Kolmogorov-Smirnov 型和 Cramér-von Mises 型检验统计量,确立了自助法的有效性,并通过大量模拟证明了检验具有良好的有限样本性能。我们的方法为比较多元分布提供了一个理论严谨且计算可行的解决方案。