Rationing of healthcare resources is a challenging decision that policy makers and providers may be forced to make during a pandemic, natural disaster, or mass casualty event. Well-defined guidelines to triage scarce life-saving resources must be designed to promote transparency, trust, and consistency. To facilitate buy-in and use during high-stress situations, these guidelines need to be interpretable and operational. We propose a novel data-driven model to compute interpretable triage guidelines based on policies for Markov Decision Process that can be represented as simple sequences of decision trees ("tree policies"). In particular, we characterize the properties of optimal tree policies and present an algorithm based on dynamic programming recursions to compute good tree policies. We utilize this methodology to obtain simple, novel triage guidelines for ventilator allocations for COVID-19 patients, based on real patient data from Montefiore hospitals. We also compare the performance of our guidelines to the official New York State guidelines that were developed in 2015 (well before the COVID-19 pandemic). Our empirical study shows that the number of excess deaths associated with ventilator shortages could be reduced significantly using our policy. Our work highlights the limitations of the existing official triage guidelines, which need to be adapted specifically to COVID-19 before being successfully deployed.


翻译:医疗保健资源配对是决策者和提供者在大流行病、自然灾害或大规模伤亡事件期间可能被迫作出的一项具有挑战性的决定,决策者和提供者可能被迫在大流行病、自然灾害或大规模伤亡事件期间作出这一具有挑战性的决定。 精心界定的对稀缺救生资源进行分类的指导方针必须设计,以促进透明度、信任和一致性。为了便利在高压力情况下的买入和使用,这些指导方针必须具有可解释性和可操作性。我们提出了一个新的数据驱动模型,以根据马可夫决策程序的政策计算可解释的分类指导方针,可以作为决策树的简单序列(“树政策 ” ) 。我们的经验研究表明,最佳树政策的特点,我们根据动态的编程循环提供一种算法,以计算良好的树政策。我们利用这一方法获得简单、新颖的对COVID-19病人通风器分配的三角准则,以蒙特菲奥尔医院的真实病人数据为基础。我们还将我们的准则的执行情况与2015年制定的纽约州官方准则(紧接在COVID-19大流行之前)进行比较。我们的经验研究表明,与通风短缺有关的超额死亡的人数可以用我们的政策来大幅度减少。我们的工作突出地强调目前正式三维准则的局限性。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
7+阅读 · 2021年10月12日
Arxiv
15+阅读 · 2020年12月17日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Arxiv
7+阅读 · 2021年10月12日
Arxiv
15+阅读 · 2020年12月17日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Top
微信扫码咨询专知VIP会员