We present Advancing Front Mapping (AFM), a provably robust algorithm for the computation of surface mappings to simple base domains. Given an input mesh and a convex or star-shaped target domain, AFM installs a (possibly refined) version of the input connectivity into the target shape, generating a piece-wise linear mapping between them. The algorithm is inspired by the advancing front meshing paradigm, which is revisited to operate on two embeddings at once, thus becoming a tool for compatible mesh generation. AFM extends the capabilities of existing robust approaches, such as Tutte or Progressive Embedding, by providing the same theoretical guarantees of injectivity and at the same time introducing two key advantages: support for a broader set of target domains (star-shaped polygons) and local mesh refinement, which is used to automatically open the space of solutions in case a valid mapping to the target domain does not exist. AFM relies solely on two topological operators (split and flip), and on the computation of segment intersections, thus permitting to compute provably injective mappings without solving any numerical problem. This makes the algorithm predictable, easy to implement, debug and deploy. We validated the capabilities of AFM extensively, executing more than one billion advancing front moves on 36K mapping tasks, proving that our theoretical guarantees nicely transition to a robust and practical implementation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年7月7日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关论文
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员