A set-family ${\cal F}$ is disjointness-compliable if $A' \subseteq A \in {\cal F}$ implies $A' \in {\cal F}$ or $A \setminus A' \in {\cal F}$; if ${\cal F}$ is also symmetric then ${\cal F}$ is proper. A classic result of Goemans and Williamson [SODA 92:307-316] states that the problem of covering a proper set-family by a min-cost edge set admits approximation ratio $2$, by a classic primal-dual algorithm. However, there are several famous algorithmic problems whose set-family ${\cal F}$ is disjointness-compliable but not symmetric -- among them $k$-Minimum Spanning Tree ($k$-MST), Generalized Point-to-Point Connection (G-P2P), Group Steiner, Covering Steiner, multiroot versions of these problems, and others. We will show that any such problem admits approximation ratio $O(α\log τ)$, where $τ$ is the number of inclusion-minimal sets in the family ${\cal F}$ that models the problem and $α$ is the best known approximation ratio for the case when $τ=1$. This immediately implies several results, among them the following two. (i) The first deterministic polynomial time $O(\log n)$-approximation algorithm for the G-P2P problem. Here the $τ=1$ case is the $k$-MST problem. (ii) Approximation ratio $O(\log^4 n)$ for the multiroot version of the Covering Steiner problem, where each root has its own set of groups. Here the $τ=1$ case is the Covering Steiner problem. We also discuss the parameterized complexity of covering a disjointness-compliable family ${\cal F}$, when parametrized by $τ$. We will show that if ${\cal F}$ is proper then the problem is fixed parameter tractable and can be solved in time $O^*(3^τ)$. For the non-symmetric case we will show that the problem admits approximation ratio between $α$ and $α+1$ in time $O^*(3^τ)$, which is essentially the best possible.
翻译:若集合族 ${\cal F}$ 满足 $A' \subseteq A \in {\cal F}$ 蕴含 $A' \in {\cal F}$ 或 $A \setminus A' \in {\cal F}$,则称其为不相交可满足的;若 ${\cal F}$ 同时具有对称性,则称其为真族。Goemans 与 Williamson 的经典结果 [SODA 92:307-316] 表明,通过经典原始对偶算法,用最小成本边集覆盖真族的问题可获得逼近比为 $2$。然而,存在若干著名算法问题,其对应的集合族 ${\cal F}$ 虽不相交可满足但不具对称性——其中包括 $k$ 最小生成树 ($k$-MST)、广义点对点连接 (G-P2P)、组斯坦纳、覆盖斯坦纳、这些问题的多根版本及其他问题。我们将证明,任何此类问题均具有 $O(α\log τ)$ 的逼近比,其中 $τ$ 为建模该问题的族 ${\cal F}$ 中包含极小集的数目,$α$ 为 $τ=1$ 情形下已知的最佳逼近比。这直接导出若干结果,其中包括以下两点。(i) 针对 G-P2P 问题的首个确定性多项式时间 $O(\log n)$ 逼近算法。此处 $τ=1$ 的情形对应 $k$-MST 问题。(ii) 覆盖斯坦纳问题的多根版本具有 $O(\log^4 n)$ 的逼近比,其中每个根拥有各自的组集合。此处 $τ=1$ 的情形对应覆盖斯坦纳问题。我们还讨论了覆盖不相交可满足族 ${\cal F}$ 的参数化复杂度,其中参数为 $τ$。我们将证明,若 ${\cal F}$ 为真族,则该问题是固定参数可解的,并可在 $O^*(3^τ)$ 时间内求解。对于非对称情形,我们将证明该问题在 $O^*(3^τ)$ 时间内可获得介于 $α$ 与 $α+1$ 之间的逼近比,这本质上是最优的。