Let $D=(V(D),A(D))$ be a digraph with at least one directed cycle. A set $F$ of arcs is a feedback arc set (FAS) if $D-F$ has no directed cycle. The FAS decomposition number ${\rm fasd}(D)$ of $D$ is the maximum number of pairwise disjoint FASs whose union is $A(D)$. The directed girth $g(D)$ of $D$ is the minimum length of a directed cycle of $D$. Note that ${\rm fasd}(D)\le g(D).$ The FAS decomposition number appears in the well-known and far-from-solved conjecture of Woodall (1978) stating that for every planar digraph $D$ with at least one directed cycle, ${\rm fasd}(D)=g(D).$ The degree of a vertex of $D$ is the sum of its in-degree and out-degree. Let $D$ be an arc-weighted digraph and let ${\rm fas}_w(D)$ denote the minimum weight of its FAS. In this paper, we study bounds on ${\rm fasd}(D)$, ${\rm fas}_w(D)$ and ${\rm fas}(D)$ for arc-weighted oriented graphs $D$ (i.e., digraphs without opposite arcs) with upper-bounded maximum degree $Δ(D)$ and lower-bounded $g(D)$. Note that these parameters are related: ${\rm fas}_w(D)\le w(D)/{\rm fasd}(D)$, where $w(D)$ is the total weight of $D$, and ${\rm fas}(D)\le |A(D)|/{\rm fasd}(D).$ In particular, we prove the following: (i) If $Δ(D)\leq~4$ and $g(D)\geq 3$, then ${\rm fasd}(D) \geq 3$ and therefore ${\rm fas}_w(D)\leq \frac{w(D)}{3}$ which generalizes a known tight bound for an unweighted oriented graph with maximum degree at most 4; (ii) If $Δ(D)\leq 3$ and $g(D)\in \{3,4,5\}$, then ${\rm fasd}(D)=g(D)$; (iii) If $Δ(D)\leq 3$ and $g(D)\ge 8$ then ${\rm fasd}(D)<g(D).$ We also give some bounds for the cases when $Δ$ or $g$ are large and state several open problems and a conjecture.
翻译:设 $D=(V(D),A(D))$ 为一个至少包含一个有向环的有向图。若 $D-F$ 不含任何有向环,则弧集 $F$ 称为一个反馈弧集(FAS)。$D$ 的反馈弧集分解数 ${\rm fasd}(D)$ 是指 $A(D)$ 可被分解为两两不相交的反馈弧集的最大数目。$D$ 的有向围长 $g(D)$ 是 $D$ 中有向环的最小长度。注意 ${\rm fasd}(D)\le g(D)$。反馈弧集分解数出现在 Woodall(1978)提出的著名且远未解决的猜想中,该猜想断言:对于每个至少包含一个有向环的平面有向图 $D$,均有 ${\rm fasd}(D)=g(D)$。$D$ 中顶点的度为其入度与出度之和。设 $D$ 为弧加权有向图,记 ${\rm fas}_w(D)$ 为其反馈弧集的最小权重。本文研究具有上界最大度 $Δ(D)$ 和下界 $g(D)$ 的弧加权有向图(即不含反向弧的有向图)的 ${\rm fasd}(D)$、${\rm fas}_w(D)$ 和 ${\rm fas}(D)$ 的界。注意这些参数之间存在关联:${\rm fas}_w(D)\le w(D)/{\rm fasd}(D)$,其中 $w(D)$ 为 $D$ 的总权重,且 ${\rm fas}(D)\le |A(D)|/{\rm fasd}(D)$。特别地,我们证明了以下结果:(i)若 $Δ(D)\leq~4$ 且 $g(D)\geq 3$,则 ${\rm fasd}(D) \geq 3$,从而 ${\rm fas}_w(D)\leq \frac{w(D)}{3}$,该结论推广了最大度不超过 4 的非加权有向图的一个已知紧界;(ii)若 $Δ(D)\leq 3$ 且 $g(D)\in \{3,4,5\}$,则 ${\rm fasd}(D)=g(D)$;(iii)若 $Δ(D)\leq 3$ 且 $g(D)\ge 8$,则 ${\rm fasd}(D)<g(D)$。我们还给出了当 $Δ$ 或 $g$ 较大时的一些界,并提出了若干公开问题和一个猜想。