It has been discovered that latent-Euclidean variational autoencoders (VAEs) admit, in various capacities, Riemannian structure. We adapt these arguments but for complex VAEs with a complex latent stage. We show that complex VAEs reveal to some level Kähler geometric structure. Our methods will be tailored for decoder geometry. We derive the Fisher information metric in the complex case under a latent complex Gaussian with trivial relation matrix. It is well known from statistical information theory that the Fisher information coincides with the Hessian of the Kullback-Leibler (KL) divergence. Thus, the metric Kähler potential relation is exactly achieved under relative entropy. We propose a Kähler potential derivative of complex Gaussian mixtures that acts as a rough proxy to the Fisher information metric while still being faithful to the underlying Kähler geometry. Computation of the metric via this potential is efficient, and through our potential, valid as a plurisubharmonic (PSH) function, large scale computational burden of automatic differentiation is displaced to small scale. Our methods leverage the law of total covariance to bridge behavior between our potential and the Fisher metric. We show that we can regularize the latent space with decoder geometry, and that we can sample in accordance with a weighted complex volume element. We demonstrate these strategies, at the exchange of sample variation, yield consistently smoother representations and fewer semantic outliers.
翻译:已有研究发现,隐空间为欧几里得的变分自编码器(VAE)在不同程度上具备黎曼结构。我们调整了这些论证,将其应用于具有复数隐空间的复变分自编码器。我们证明复变分自编码器在某种程度上揭示了凯勒几何结构。我们的方法将专门针对解码器几何进行设计。在隐空间为具有平凡关系矩阵的复高斯分布假设下,我们推导了复数情形下的费舍尔信息度量。统计信息理论中众所周知,费舍尔信息与Kullback-Leibler(KL)散度的海森矩阵相一致。因此,在相对熵框架下可精确实现度量与凯勒势的关系。我们提出了一种复高斯混合模型的凯勒势导数,该导数虽仅为费舍尔信息度量的粗略近似,但仍忠实于底层的凯勒几何结构。通过该势函数计算度量具有高效性,且由于我们的势函数作为多重次调和(PSH)函数有效,自动微分的大规模计算负担被转移至小规模计算。我们的方法利用全协方差定律来桥接势函数与费舍尔度量之间的行为关联。研究表明,我们可以通过解码器几何对隐空间进行正则化,并能依据加权的复体积元进行采样。实验证明,这些策略以样本多样性为代价,能够持续获得更平滑的表征和更少的语义异常点。