The development of efficient sampling algorithms catering to non-Euclidean geometries has been a challenging endeavor, as discretization techniques which succeed in the Euclidean setting do not readily carry over to more general settings. We develop a non-Euclidean analog of the recent proximal sampler of [LST21], which naturally induces regularization by an object known as the log-Laplace transform (LLT) of a density. We prove new mathematical properties (with an algorithmic flavor) of the LLT, such as strong convexity-smoothness duality and an isoperimetric inequality, which are used to prove a mixing time on our proximal sampler matching [LST21] under a warm start. As our main application, we show our warm-started sampler improves the value oracle complexity of differentially private convex optimization in $\ell_p$ and Schatten-$p$ norms for $p \in [1, 2]$ to match the Euclidean setting [GLL22], while retaining state-of-the-art excess risk bounds [GLLST23]. We find our investigation of the LLT to be a promising proof-of-concept of its utility as a tool for designing samplers, and outline directions for future exploration.


翻译:针对非欧几里得几何设计高效采样算法一直是一项具有挑战性的工作,因为在欧几里得环境中成功的离散化技术不易直接推广到更一般的设定中。我们发展了[LST21]近期提出的近端采样器的一种非欧几里得类比,该采样器自然地通过一种称为密度函数的对数拉普拉斯变换(LLT)的对象引入正则化。我们证明了LLT新的数学性质(具有算法特征),例如强凸性-光滑性对偶性和一个等周不等式,这些性质被用于证明我们的近端采样器在热启动条件下具有与[LST21]相匹配的混合时间。作为我们的主要应用,我们展示了在$p \in [1, 2]$的$\ell_p$范数和Schatten-$p$范数下,我们的热启动采样器将差分隐私凸优化的值预言机复杂度改进到与欧几里得设定[GLL22]相匹配,同时保持了最先进的超额风险界[GLLST23]。我们认为对LLT的这项研究是将其作为采样器设计工具效用的一个前景广阔的概念验证,并概述了未来探索的方向。

0
下载
关闭预览

相关内容

在数学和计算机科学之中,算法(Algorithm)为一个计算的具体步骤,常用于计算、数据处理和自动推理。精确而言,算法是一个表示为有限长列表的有效方法。算法应包含清晰定义的指令用于计算函数。 来自维基百科: 算法
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
专知会员服务
25+阅读 · 2021年7月31日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
专知会员服务
25+阅读 · 2021年7月31日
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员