Program logics for bug-finding (such as the recently introduced Incorrectness Logic) have framed correctness and incorrectness as dual concepts requiring different logical foundations. In this paper, we argue that a single unified theory can be used for both correctness and incorrectness reasoning. We present Outcome Logic (OL), a novel generalization of Hoare Logic that is both monadic (to capture computational effects) and monoidal (to reason about outcomes and reachability). OL expresses true positive bugs, while retaining correctness reasoning abilities as well. To formalize the applicability of OL to both correctness and incorrectness, we prove that any false OL specification can be disproven in OL itself. We also use our framework to reason about new types of incorrectness in nondeterministic and probabilistic programs. Given these advances, we advocate for OL as a new foundational theory of correctness and incorrectness.


翻译:错误调查的程序逻辑(例如最近引入的错误逻辑)将正确性和不正确性描述为需要不同逻辑基础的双重概念。 在本文中,我们主张,一个单一的统一理论可以用于正确性和不正确性推理。我们提出了结果逻辑(OL),这是Hoare逻辑的一种新的普遍化,它既是月经(以捕捉计算效果),也是单相向(以计算结果和可达性为根据)。OL表示真正的正错误,同时保留正确性推理能力。为了正式确定OL对正确性和不正确性的适用性,我们证明任何错误的OL规格都可以在OL本身中解脱。我们还利用我们的框架来解释非确定性和概率性方案的新类型的不正确性。鉴于这些进步,我们主张OL是正确性和不正确性的新基础理论。</s>

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
53+阅读 · 2021年1月20日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月26日
Arxiv
0+阅读 · 2023年4月24日
Arxiv
30+阅读 · 2021年8月18日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员