Treatment noncompliance is pervasive in infectious disease cluster-randomized trials. Although all individuals within a cluster are assigned the same treatment condition, the treatment uptake status may vary across individuals due to noncompliance. We propose a semiparametric framework to evaluate the individual compliance effect and network assignment effect within principal stratum exhibiting different patterns of noncompliance. The individual compliance effect captures the portion of the treatment effect attributable to changes in treatment receipt, while the network assignment effect reflects the pure impact of treatment assignment and spillover among individuals within the same cluster. Unlike prior efforts which either empirically identify or interval identify these estimands, we characterize new structural assumptions for nonparametric point identification. We then develop semiparametrically efficient estimators that combine data-adaptive machine learning methods with efficient influence functions to enable more robust inference. Additionally, we introduce sensitivity analysis methods to study the impact under assumption violations, and apply the proposed methods to reanalyze a cluster-randomized trial in Kenya that evaluated the impact of school-based mass deworming on disease transmission.
翻译:在传染病集群随机试验中,治疗非依从性普遍存在。尽管同一集群内的所有个体被分配相同的治疗条件,但由于非依从性,治疗接受状态可能因个体而异。我们提出了一个半参数框架,用于评估表现出不同非依从性模式的主层内的个体依从效应和网络分配效应。个体依从效应捕捉了由治疗接受变化引起的治疗效果部分,而网络分配效应反映了治疗分配及同一集群内个体间溢出的纯粹影响。与先前仅通过经验识别或区间识别这些估计量的研究不同,我们刻画了非参数点识别的新结构假设。随后,我们开发了半参数高效估计器,将数据自适应机器学习方法与高效影响函数相结合,以实现更稳健的推断。此外,我们引入了敏感性分析方法以研究假设违反下的影响,并将所提方法应用于重新分析肯尼亚一项评估校内大规模驱虫对疾病传播影响的集群随机试验。