We introduce a general framework for constructing generative models using one-dimensional noising processes. Beyond diffusion processes, we outline examples that demonstrate the flexibility of our approach. Motivated by this, we propose a novel framework in which the 1D processes themselves are learnable, achieved by parameterizing the noise distribution through quantile functions that adapt to the data. Our construction integrates seamlessly with standard objectives, including Flow Matching and consistency models. Learning quantile-based noise naturally captures heavy tails and compact supports when present. Numerical experiments highlight both the flexibility and the effectiveness of our method.
翻译:我们提出了一种利用一维加噪过程构建生成模型的通用框架。除了扩散过程外,我们概述了多个示例以展示该方法的灵活性。受此启发,我们提出了一种新颖的框架,其中一维过程本身是可学习的,这是通过量化函数参数化噪声分布以适配数据来实现的。我们的构建方式与包括流匹配和一致性模型在内的标准目标无缝集成。基于量化的噪声学习能够自然地捕获数据中存在的重尾分布和紧支撑特性。数值实验突显了我们方法在灵活性和有效性方面的优势。