We consider the problems of \emph{learning} and \emph{testing} real-valued convex functions over Gaussian space. Despite the extensive study of function convexity across mathematics, statistics, and computer science, its learnability and testability have largely been examined only in discrete or restricted settings -- typically with respect to the Hamming distance, which is ill-suited for real-valued functions. In contrast, we study these problems in high dimensions under the standard Gaussian measure, assuming sample access to the function and a mild smoothness condition, namely Lipschitzness. A smoothness assumption is natural and, in fact, necessary even in one dimension: without it, convexity cannot be inferred from finitely many samples. As our main results, we give: - Learning Convex Functions: An agnostic proper learning algorithm for Lipschitz convex functions that achieves error $\varepsilon$ using $n^{O(1/\varepsilon^2)}$ samples, together with a complementary lower bound of $n^{\mathrm{poly}(1/\varepsilon)}$ samples in the \emph{correlational statistical query (CSQ)} model. - Testing Convex Functions: A tolerant (two-sided) tester for convexity of Lipschitz functions with the same sample complexity (as a corollary of our learning result), and a one-sided tester (which never rejects convex functions) using $O(\sqrt{n}/\varepsilon)^n$ samples.


翻译:我们研究高斯空间上实值凸函数的**学习**与**测试**问题。尽管函数凸性在数学、统计学和计算机科学领域已得到广泛研究,但其可学习性与可测试性主要在离散或受限场景下被探讨——通常基于汉明距离,而该度量不适用于实值函数。相比之下,我们在高维标准高斯测度下研究这些问题,假设可通过样本访问函数且函数满足温和的光滑性条件(即Lipschitz连续性)。光滑性假设是自然的,且在一维情形下甚至是必要的:若无此条件,无法从有限样本推断凸性。作为主要结果,我们给出:- **凸函数学习**:针对Lipschitz凸函数的不可知论适切学习算法,使用$n^{O(1/\varepsilon^2)}$个样本达到误差$\varepsilon$,同时在**相关统计查询(CSQ)模型**中给出$n^{\\mathrm{poly}(1/\\varepsilon)}$个样本的互补下界。- **凸函数测试**:针对Lipschitz函数凸性的容忍(双侧)测试器,其样本复杂度与学习结果相同(作为推论);以及使用$O(\\sqrt{n}/\\varepsilon)^n$个样本的单侧测试器(永不拒绝凸函数)。

0
下载
关闭预览

相关内容

在数学中,定义在n维区间上的实值函数,如果函数的图上任意两点之间的线段位于图上,称为凸函数。同样地,如果函数图上或上面的点集是凸集,则函数是凸的。
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
【NeurIPS 2021】学会学习图拓扑
专知会员服务
25+阅读 · 2021年10月22日
专知会员服务
25+阅读 · 2021年7月31日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
傅里叶变换和拉普拉斯变换的物理解释及区别
算法与数学之美
11+阅读 · 2018年2月5日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
【NeurIPS 2021】学会学习图拓扑
专知会员服务
25+阅读 · 2021年10月22日
专知会员服务
25+阅读 · 2021年7月31日
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
傅里叶变换和拉普拉斯变换的物理解释及区别
算法与数学之美
11+阅读 · 2018年2月5日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员