Ridesplitting -- a type of ride-hailing in which riders share vehicles with other riders -- has become a common travel mode in some major cities. This type of shared ride option is currently provided by transportation network companies (TNCs) such as Uber, Lyft, and Via and has attracted increasing numbers of users, particularly before the COVID-19 pandemic. Previous findings have suggested ridesplitting can lower travel costs and even lessen congestion by reducing the number of vehicles needed to move people. Recent studies have also posited that ridesplitting should experience positive feedback mechanisms in which the quality of the service would improve with the number of users. Specifically, these systems should benefit from economies of scale and increasing returns to scale. This paper demonstrates evidence of their existence using trip data reported by TNCs to the City of Chicago between January and September 2019. Specifically, it shows that increases in the number of riders requesting or authorizing shared trips during a given time period is associated with shorter trip detours, higher rates of riders being matched together, lower costs relative to non-shared trips, and higher willingness for riders to share trips.


翻译:在一些大城市,骑车者与其他骑车者共用车辆的一种搭乘方式,这种搭乘方式已成为一种常见的旅行方式。这种搭乘方式目前由Uber、Lyft和Via等运输网络公司提供,吸引了越来越多的用户,特别是在COVID-19大流行之前。以前的调查结果表明,搭乘可以降低旅行费用,甚至通过减少人们移动所需车辆的数量来减少拥挤现象。最近的研究还表明,乘乘车的搭乘应具有积极的反馈机制,使服务质量与用户数量相匹配。具体地说,这些系统应受益于规模经济和不断扩大的回报率。这份文件表明,使用跨国公司在2019年1月至9月之间向芝加哥市报告的旅行数据,这些系统的存在证明它们的存在。具体地说,在特定时期内,要求或批准共同旅行的骑车者人数的增加与旅行的缩短、搭乘者比率较高、与非合乘旅行者相比费用较低、以及骑车者合乘旅行意愿较高有关。</s>

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
114+阅读 · 2021年4月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月26日
Meta-Learning to Cluster
Arxiv
18+阅读 · 2019年10月30日
VIP会员
相关VIP内容
【如何做研究】How to research ,22页ppt
专知会员服务
114+阅读 · 2021年4月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员