Stochastic processes of evolving shapes are used in applications including evolutionary biology, where morphology changes stochastically as a function of evolutionary processes. Due to the non-linear and often infinite-dimensional nature of shape spaces, the mathematical construction of suitable stochastic shape processes is far from immediate. We define and formalize properties that stochastic shape processes should ideally satisfy to be compatible with the shape structure, and we link this to Kunita flows that, when acting on shape spaces, induce stochastic processes that satisfy these criteria by their construction. We couple this with a survey of other relevant shape stochastic processes and show how bridge sampling techniques can be used to condition shape stochastic processes on observed data thereby allowing for statistical inference of parameters of the stochastic dynamics.


翻译:演化形状的随机过程被应用于包括进化生物学在内的多个领域,其中形态随进化过程以随机方式发生变化。由于形状空间具有非线性和通常无限维的特性,构建合适的随机形状过程在数学上远非易事。我们定义并形式化了随机形状过程为与形状结构兼容而应理想满足的性质,并将其与 Kunita 流联系起来:当作用于形状空间时,Kunita 流通过其构造诱导出满足这些准则的随机过程。结合对其他相关随机形状过程的综述,我们展示了如何利用桥采样技术将随机形状过程条件化于观测数据,从而实现对随机动力学参数的统计推断。

0
下载
关闭预览

相关内容

具有动能的生命体。
【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 6月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 6月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员