Graph Neural Networks (GNNs) are a popular technique for modelling graph-structured data and computing node-level representations via aggregation of information from the neighborhood of each node. However, this aggregation implies an increased risk of revealing sensitive information, as a node can participate in the inference for multiple nodes. This implies that standard privacy-preserving machine learning techniques, such as differentially private stochastic gradient descent (DP-SGD) - which are designed for situations where each data point participates in the inference for one point only - either do not apply, or lead to inaccurate models. In this work, we formally define the problem of learning GNN parameters with node-level privacy, and provide an algorithmic solution with a strong differential privacy guarantee. We employ a careful sensitivity analysis and provide a non-trivial extension of the privacy-by-amplification technique to the GNN setting. An empirical evaluation on standard benchmark datasets demonstrates that our method is indeed able to learn accurate privacy-preserving GNNs which outperform both private and non-private methods that completely ignore graph information.


翻译:神经网图(GNNs)是一种常用的技术,用于通过汇总每个节点周围的信息,模拟图形结构数据和计算节点代表。然而,这一汇总意味着披露敏感信息的风险增加,因为节点可以参与多个节点的推论。这意味着标准的隐私保护机学习技术,例如有区别的私人随机梯度梯度下降(DP-SGD),是针对每个数据点只参与一个点的推论的情况设计的,要么不适用,要么导致不准确模型。在这项工作中,我们正式界定了以节点隐私学习GNN参数的问题,并提供有强烈差异隐私保障的算法解决方案。我们采用了谨慎的敏感性分析,并为GNN设置提供了隐私逐项强化技术的非三边延伸。对标准基准数据集的实证评估表明,我们的方法确实能够学习准确的隐私保护GNNPs,它超越了完全忽略图形信息的私人和非私人方法。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年12月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员