We study the design of interpolation schedules in the stochastic interpolants framework for flow and diffusion-based generative models. We show that while all scalar interpolation schedules achieve identical statistical efficiency under Kullback-Leibler divergence in path space after optimal diffusion coefficient tuning, their numerical efficiency can differ substantially. This motivates focusing on numerical properties of the resulting drift fields rather than purely statistical criteria for schedule design. We propose averaged squared Lipschitzness minimization as a principled criterion for numerical optimization, providing an alternative to kinetic energy minimization used in optimal transport approaches. A transfer formula is derived that enables conversion between different schedules at inference time without retraining neural networks. For Gaussian distributions, the optimized schedules achieve exponential improvements in Lipschitz constants over standard linear schedules, while for Gaussian mixtures, they reduce mode collapse in few-step sampling. We also validate our approach on high-dimensional invariant distributions from stochastic Allen-Cahn equations and Navier-Stokes equations, demonstrating robust performance improvements across resolutions.
翻译:我们研究了基于流与扩散的生成模型中随机插值框架下的插值调度设计。研究表明,尽管所有标量插值调度在路径空间上经过最优扩散系数调整后,在 Kullback-Leibler 散度下具有相同的统计效率,但其数值效率可能存在显著差异。这促使我们在调度设计中关注所得漂移场的数值特性,而非单纯依赖统计准则。我们提出以平均平方 Lipschitz 性最小化作为数值优化的原则性准则,为最优传输方法中使用的动能最小化提供了替代方案。推导出的转换公式可在推理时实现不同调度间的转换,而无需重新训练神经网络。对于高斯分布,优化调度相比标准线性调度在 Lipschitz 常数上实现了指数级改进;对于高斯混合分布,则能在少步采样中减少模式坍缩。我们还在随机 Allen-Cahn 方程和 Navier-Stokes 方程的高维不变分布上验证了该方法,证明了其在不同分辨率下均具有稳健的性能提升。