We present a coalgebraic framework for studying generalisations of dynamic modal logics such as PDL and game logic in which both the propositions and the semantic structures can take values in an algebra $\mathbf{A}$ of truth-degrees. More precisely, we work with coalgebraic modal logic via $\mathbf{A}$-valued predicate liftings where $\mathbf{A}$ is a $\mathsf{FL}_{\mathrm{ew}}$-algebra, and interpret actions (abstracting programs and games) as $\mathsf{F}$-coalgebras where the functor $\mathsf{F}$ represents some type of $\mathbf{A}$-weighted system. We also allow combinations of crisp propositions with $\mathbf{A}$-weighted systems and vice versa. We introduce coalgebra operations and tests, with a focus on operations that are reducible in the sense that modalities for composed actions can be reduced to compositions of modalities for the constituent actions. We prove that reducible operations are safe for bisimulation and behavioural equivalence, and prove a general strong completeness result, from which we obtain new strong completeness results for $2$-valued iteration-free PDL with $\mathbf{A}$-valued accessibility relations when $\mathbf{A}$ is a finite chain, and for many-valued iteration-free game logic with many-valued strategies based on finite Lukasiewicz logic.
翻译:我们提出了一个余代数框架,用于研究动态模态逻辑(如PDL和博弈逻辑)的推广形式,其中命题和语义结构均可取值于一个真值度代数$\mathbf{A}$。具体而言,我们通过$\mathbf{A}$值谓词提升来研究余代数模态逻辑,其中$\mathbf{A}$是一个$\mathsf{FL}_{\mathrm{ew}}$-代数,并将动作(抽象程序和博弈)解释为$\mathsf{F}$-余代数,其中函子$\mathsf{F}$表示某种类型的$\mathbf{A}$加权系统。我们同时允许清晰命题与$\mathbf{A}$加权系统的组合及其逆组合。我们引入了余代数运算与测试,重点关注可约化运算——即复合动作的模态可约化为构成动作的模态组合。我们证明了可约化运算对互模拟和行为等价具有安全性,并证明了一个通用的强完备性定理。由此我们获得了新的强完备性结果:当$\mathbf{A}$为有限链时,具有$\mathbf{A}$值可达关系的二值无迭代PDL的强完备性,以及基于有限Łukasiewicz逻辑的具有多值策略的多值无迭代博弈逻辑的强完备性。