Low density parity check (LDPC) codes, initially discovered by Gallager, exhibit excellent performance in iterative decoding, approaching the Shannon limit. MDS array codes, with favorable algebraic structures, are codes suitable for decoding large burst errors. The Blaum-Roth (BR) code, an MDS array code similar to the Reed-Solomon (RS) code but has a parity-check matrix prone to $4$-cycles. Fossorier proposed constructing quasi-cyclic LDPC codes from circulant permutation matrices but are not MDS array codes. This paper aims to construct codes that possess both the block MDS property and have no $4$-cycles in the Tanner graph of their parity-check matrices, namely the so-called block MDS LDPC codes. Non-binary block MDS QC codes were first constructed by [Tauz {\it et al. }IEEE ITW, 2025] using circulant shift matrices. We first generate a family of block MDS codes over $\F_2$ from punctured circulant permutation matrices. Second, we construct a family of block MDS LDPC codes from circulant matrices with column weight $> 1$ (CM$(t)$). Additionally, we present the Moore determinant formula for CM$(t)$s and a sufficient condition to avoid $4$-cycles in CM\((t)\)-QC LDPC codes' Tanner graphs for $t> 1$. We also point out the non-existence of binary block MDS CPM-QC LDPC codes. Compared to the codes constructed in [Li {\it et al. }IEEE TIT, 2023] and [Xiao {\it et al. }IEEE TCOM, 2021], our block MDS LDPC codes show enhanced random-error-correction at a similar code length and rate. Meanwhile, these codes can effectively combat burst errors when considered as array codes. Both of our two types of constructions for block MDS LDPC codes are applicable to the scenario of the binary field.
翻译:低密度奇偶校验(LDPC)码最初由Gallager发现,在迭代译码中表现出优异的性能,接近香农极限。MDS阵列码具有良好的代数结构,适用于译码大规模突发错误。Blaum-Roth(BR)码是一种类似于Reed-Solomon(RS)码的MDS阵列码,但其奇偶校验矩阵容易产生4环。Fossorier提出了从循环置换矩阵构造准循环LDPC码的方法,但这些码并非MDS阵列码。本文旨在构造既具有分块MDS特性,又在其奇偶校验矩阵的Tanner图中不含4环的码,即所谓的分块MDS LDPC码。非二进制分块MDS QC码首先由[Tauz等人,IEEE ITW,2025]使用循环移位矩阵构造。我们首先从删余循环置换矩阵生成一族在F_2上的分块MDS码。其次,我们从列重大于1的循环矩阵(CM(t))构造一族分块MDS LDPC码。此外,我们给出了CM(t)的Moore行列式公式,以及一个避免CM(t)-QC LDPC码在Tanner图中出现4环的充分条件(当t>1时)。我们还指出了二进制分块MDS CPM-QC LDPC码的不存在性。与[Li等人,IEEE TIT,2023]和[Xiao等人,IEEE TCOM,2021]中构造的码相比,我们的分块MDS LDPC码在相近的码长和码率下表现出增强的随机纠错能力。同时,当被视为阵列码时,这些码能有效对抗突发错误。我们提出的两种分块MDS LDPC码构造方法均适用于二进制域场景。