We introduce a restricted latent class exploratory model for longitudinal data with ordinal attributes and respondent-specific covariates. Responses follow a time inhomogeneous hidden Markov model where the probability of a particular latent state at a time point is conditional on values at the previous time point of the respondent's covariates and latent state. We prove that the model is identifiable, state a Bayesian formulation, and demonstrate its efficacy in a variety of scenarios through two simulation studies. We apply the model to response data from a mathematics examination, comparing the results to a previously published confirmatory analysis, and also apply it to emotional state response data which was measured over a several-day period.


翻译:本文提出一种针对具有序数属性及受访者特定协变量的纵向数据的受限潜在类别探索性模型。反应遵循时间非齐次隐马尔可夫模型,其中特定时间点的潜在状态概率取决于受访者协变量与潜在状态在前一时间点的取值。我们证明了该模型的可识别性,阐述了其贝叶斯形式,并通过两项模拟研究展示了其在多种场景下的有效性。我们将该模型应用于数学考试的反应数据,将结果与先前发表的验证性分析进行对比,同时将其应用于持续数日测量的情绪状态反应数据。

0
下载
关闭预览

相关内容

144页ppt《扩散模型》,Google DeepMind Sander Dieleman
专知会员服务
46+阅读 · 11月21日
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
20+阅读 · 2024年6月11日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
33+阅读 · 2021年2月27日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
VIP会员
相关VIP内容
144页ppt《扩散模型》,Google DeepMind Sander Dieleman
专知会员服务
46+阅读 · 11月21日
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
20+阅读 · 2024年6月11日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
33+阅读 · 2021年2月27日
相关资讯
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员